

# Real Analysis Toolbox

Robert

June 2024

### **Abstract**

This is a collection of useful tricks I've collected while learning real analysis. Also, I'm not sure why the abstract is not centered.

# Chapter 1

## Single variable analysis

To be updated soon

## Chapter 2

# Measure Theory

### 2.1 Set theory tricks

**Trick 2.1.1.** Let  $X$  be a set and  $A, B \subseteq X$ . Then, we have

$$A \cup B = [A \cap B^c] \cup [A^c \cap B] \cup [A \cap B].$$

**Example 2.1.2.** We shall use this trick to prove that if  $A, B$  are  $\mu^*$ -measurable sets, then  $A \cup B$  is also  $\mu^*$ -measurable. Take  $E \subseteq X$ , and notice that

$$\begin{aligned} \mu^*(E) &= \mu^*(E \cap A) + \mu^*(E \cap A^c) \\ &= \mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap B^c) + \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A^c \cap B^c) \\ &\geq \mu^*(E \cap (A \cup B)) + \mu^*(E \cap A^c \cap B^c) \quad \text{By subadditivity} \\ &= \mu^*(E \cap (A \cup B)) + \mu^*(E \cap (A \cap B)^c) \end{aligned}$$

//

**Trick 2.1.3.** If  $E, F \subseteq X$  then  $E \setminus F = E \cap F^c$ .

**Trick 2.1.4.** Let  $E \subseteq X$ . Given any other set  $A \subseteq X$ , we can write  $E$  as the *disjoint* union like

$$E = (E \cap A) \cup (E \cap A^c).$$

**Trick 2.1.5** (Disjointify more stuff). Given a collection of sets  $\{E_k\}_{k=1}^\infty$ , we can define a new family of sets  $\{F_k\}_{k=1}^\infty$  by

$$F_k = E_k \setminus \bigcup_{i=1}^{k-1} E_i.$$

We have the following useful properties:

- $F_k$ 's are pairwise disjoint
- $E_k = \bigcup_{i=1}^k F_i$
- $\bigcup_{i=1}^\infty E_i = \bigcup_{j=1}^\infty F_j$

**Trick 2.1.6** (Stacking sets). If  $\{A_j\}_{j=1}^\infty$  is a pairwise disjoint collection of sets, we can define a new family  $\{B_k\}_{k=1}^\infty$  by

$$B_k = \bigcup_{i=1}^k A_i.$$

As usual if the  $A_j$ 's come from a  $\sigma$ -algebra then  $B_k$  stays in the  $\sigma$ -algebra.

We have the following useful properties:

- $B_k \cap A_k = A_k$ ,
- $B_k \cap A_k^c = B_{k-1}$ .

**Example 2.1.7.** Suppose  $\{A_j\}_{j=1}^{\infty}$  is a pairwise disjoint collection of  $\mu^*$ -measurable sets. Let  $E \subseteq X$ , then by defining  $B_k$  as in [Trick 2.1.6](#), we have for each  $n$ ,

$$\begin{aligned}\mu^*(E \cap B_n) &= \mu^*(E \cap B_n \cap A_n) + \mu^*(E \cap B_n \cap A_n^c) \\ &= \mu^*(E \cap A_n) + \mu^*(E \cap B_{n-1}).\end{aligned}$$

//

## 2.2 Useful Theorems

**Lemma 2.2.1.** Let  $X$  be a set and let  $\mathcal{A}$  be an algebra on  $X$ . Let  $\mu_0$  be a premeasure and let  $\mu^*$  be the outer measure induced by  $\mu_0$ . Let  $\mathcal{A}_\sigma$  be the collection of countable unions of sets in  $\mathcal{A}$  and  $\mathcal{A}_{\sigma\delta}$  be the collection of countable intersections of sets in  $\mathcal{A}_\sigma$ . Then, given any  $E \subseteq X$  and  $\varepsilon > 0$  there exists  $A \in \mathcal{A}_\sigma$  such that  $A \supseteq E$ , and  $\mu^*(A) \leq \mu^*(E) + \varepsilon$ .

**Corollary 2.2.2.** Given any  $E \subseteq X$ , there exists  $B \in \mathcal{A}_{\sigma\delta}$  such that  $B \supseteq E$  and  $\mu^*(B) = \mu^*(E)$ .

*Proof.* For each  $n$ , let  $A_n \in \mathcal{A}_\sigma$  be the set obtained from [Lemma 2.2.1](#) such that  $A_n \supseteq E$ , and  $\mu^*(A_n) \leq \mu^*(E) + 1/n$ . Now set  $B = \bigcap_{n=1}^{\infty} A_n$ . Notice that  $B \in \mathcal{A}_{\sigma\delta}$ . We also have  $B \supseteq E$  as each  $A_n \supseteq E$ , and thus  $\mu^*(B) \geq \mu^*(E)$ . Now, for every  $n$ ,

$$\mu^*(B) \leq \mu^*(A_n) \leq \mu^*(E) + \frac{1}{n}$$

Letting  $n \rightarrow \infty$  (taking limits on both sides), we get  $\mu^*(B) \leq \mu^*(E)$ . □