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Chapter 1

Topologies and bases

Definition 1.0.1 (Topology). A topology on X is a set 7 C P(X) such that
1. g, X e,
2. If {Us:a€ A} C 7, then |J,cp Ua € 7.
3. IfUh,...,U, €7, then N, U; €.

When talking to your friends, you might introduce it as ”a topology is a subset of the power set of X that contains
the empty set, X, and it is closed under arbitrary unions and finite intersections.

A topological space X is a set with a topology 7. When we are only working with one topology, we will abuse notation
and simply call a set X a topological space with no explicit mention of the topology.

When we say R is a topological space, it is usually understood that the topology on R is the usual topology on R.
Example 1.0.2. Take R and the topology on R to be arbitrary unions and finite intersections of open intervals.
Example 1.0.3. Let X be any set and let 7 = { @, X }. This is a topology on X, it is the smallest topology on X

and it is called the trivial/indiscrete topology on X. /
Example 1.0.4. Let X be any set and let 7 = P(X). Then this is a topology on X and it is the largest topology on
X. It is called the discrete topology on X. /

Definition 1.0.5 (Open set). Let X be a set with topology 7. An element O € 7 is called an open subset of X,
or an open set. If O C X and we say that O is open in X, it means that O € 7.

Example 1.0.6. Every open interval in R is open. /

Definition 1.0.7 (Neighborhood). Let X be a topological space with topology 7 and x € X. Then a set U is a
(open) neighborhood of z if x € U and U € 7.

Note that we sometimes will simply say neighborhood of x. Neighborhoods are always understood to be open. If the
neighborhood is not open, it will be stated explicitly.

1.1 Basis and subbasis
Definition 1.1.1. Let X be a set. Then B C P(X) is a basis (for a topology) on X if
e For every x € X, there is a B € B such that x € B.
o For every By, By € B, for every x € By N By, there exists Bs € B such that x € B3 C B N Bs.

Lemma 1.1.2. Let X be a set and 7,7" be topologies on X. Let B be a basis for T and B’ be a basis for 7. Then,
7 C 7' if and only if for every x € X and every B € B such that x € B, there exists B’ € B’ such that x € B’ C B.
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Loosely speaking, this says that 7’ is finer than 7 if and only if given any basis element B of 7 we can find a basis
element of 7/ that is contained within B.

Note that it is sufficient to find U € 7/ such that € U and U C B, as every open set is the union of basis elements.

Definition 1.1.3. Let X be a set. S C P(X) is a subbasis if | JS = X. The topology generated by S is the
unions of finite intersections of elements of S.

Note that a subbasis can be used to generate a basis as well.

Example 1.1.4. The lower limit topology on R is finer than the usual topology. Let B = {[a,b) : a < b,a,b € R} be
the usual basis of the lower limit topology. The usual topology has a basis of open intervals, { (a,b) : a < b,a,b € R }.
Take any x € R and any open interval (a,b) that contains z. Then notice that [z,b) C (a,b) and [z,b) € B. /

1.2 Closed sets, interiors and boundaries

Definition 1.2.1 (Closed set). Let X be a topological space. A set C' C X is closed if X \ X is open.

Note that a set can be both open and closed at the same time. We call such sets clopen.
Example 1.2.2. In any topological space X, @ and X are closed. /
Example 1.2.3. In R, any closed interval [a, ] is closed. /

Definition 1.2.4 (Interior). Let X be a topological space and A C X. Then the interior of A, denoted A° is
defined to be
A°:U{U§A:Uisopen .

The definition says that the interior of A is the union of all the open sets that are contained within A. Put differently,
the interior of a set A is the largest open set contained in A
Exercise 1.2.5. Prove the remark above.

Definition 1.2.6 (Closure). The closure of A C X, denoted A, is defined to be
Zzﬂ{CQA:CiS closed }.
The above definition simply says that the closure of A is the intersection of all closed sets that contain A. Thus the
closure of a set is the smallest closed set contained in A.

Exercise 1.2.7. Prove the remark above.

Definition 1.2.8 (Boundary). Let X be a topological space. Let A C X. Then the boundary of A, denoted A,
is defined as AN X \ A.

Lemma 1.2.9. z € A if and only if any open neighborhood of x intersects A and X \ A.

Proof. Left to reader. O

Definition 1.2.10 (Limit point). Let X be a topological space and A C X. A point z € X is a limit point of A
if any neighborhood of x intersects A\ {z }.

Proposition 1.2.11. Let X be a topological space and A C X. Then A= AULy%, where L4 is the set of limit points
of A.

Proof. Exercise. O
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Definition 1.2.12 (Convergence). Let (z,) C X be a sequence. Then, (z,) is said to converge to z, and we
write (z,) — « (or lim,_, @, = x) if given any neighborhood U of z, there is an N € N such that if n > N,
x, € U. We say that x is a limit of z,,.

Note how similar this is to the definition of convergence in R (or R™). In fact, they are equivalent. We leave it to the
reader to prove this.

Exercise 1.2.13. Show that in R with the usual topology, a sequence z,, converges to x in the usual epsilon-N sense
if and only if it converges in the topological definition.

We must warn the reader that limits may not be unique. That is why we say ”a” limit, not ”the” limit.
Example 1.2.14. Let X =R and give it the trivial topology. Then any sequence in X converges to any point in

X. /

We shall quickly summarize some useful results from this section.
Proposition 1.2.15 (Criterion for openness). Let A C X. Then, the following are equivalent:

o A is open.
o A= A°.
e A has no boundary points.

e FEvery point of A has a neighborhood contained in A.

Proof. Relatively easy. O
Proposition 1.2.16 (Criterion for closedness). Let A C X. Then, the following are equivalent:

e A is closed.

e A=A

e FEvery boundary point of A is in A.

e FBvery point of A€ has a neighborhood contained in A°.

Proof. Not hard. O

CHAPTER 1. TOPOLOGIES AND BASES 5
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1.3 Hausdorff spaces

Definition 1.3.1 (Hausdorff space). A topological space X is called Hausdorf! if given =,y € X such that x # y,
there exists disjoint open neighborhoods U of z and V' of y such that UNV = &.

Example 1.3.2. R is a Hausdorff space. Any R” is a Hausdorff space. Any metric space is Hausdorff. Given = # y
in a metric space, let r = d(x,y)/2. Then a ball of radius r around z and around y are disjoint. /
Example 1.3.3. Let X be a set with more than one point and give it the trivial topology. Then X is not Hausdorff.
Lemma 1.3.4. If X is a Hausdorff space and x € X, then {x } is closed.

Proof. We simply need to show that X \ {z} is open. Let y € X \ {z}. Then y # x, so there are disjoint
neighborhoods U,V of y and z respectively. Then U C X \ {z }. O
It immediately follows that finite point sets are closed.

One useful property of a Hausdorff space is the fact that if we have a sequence, it has a unique limit.

Proposition 1.3.5. In a Hausdorff space, limits are unique.

Proof. Suppose not. Let (x,) — z and (z,) — y where z # y. Let U,V be disjoint neighborhoods of = and y
respectively. Then, there is Ny such that xy, € U and Ny such that zn, € V. Let N = max{ Ny, No }. Then
xy € UNV. But U,V are disjoint. Oops! O

Since R is a Hausdorff space this proves that limits are unique in R.

1.4 Continuous functions

Definition 1.4.1 (Continuity). Let X,Y be topological spaces and f : X — Y. Then f is said to be continuous
if for every open subset O of Y, f~1(O) is open in X.

Proposition 1.4.2. Let f : R — R. Then f is continuous in the epsilon-delta sense if and only if f is continuous in
the topological sense.

Proposition 1.4.3 (Continuity with closed sets). Let X, Y be topological spaces and f : X — Y. Then f is continuous
if and only if given a closed set C CY, f~Y(C) is closed in X.

CHAPTER 1. TOPOLOGIES AND BASES 6



Chapter 2

Constructing spaces

2.1 Subspace topology

Definition 2.1.1 (Subspace topology). Let X be a topological space with topology 7 and Y any subset of X.
Then the set
{UnY:Uet}

is a basis for a topology on Y, and the topology it generates is called the subspace topology on Y (from X).
We then call Y a subspace of X.

It is important to note that this is very much unlike what subspaces are in linear algebra. We emphasize that any
subset of a topological space whatsoever can be given the subspace topology.

Example 2.1.2. Let X = R with the usual topology and Y = (0, 1), giving ¥ the subspace topology from X. What
do the open sets of Y look like? Well, if (a,b) C Y, then (a,bd) is open in Y as (a,b) = (a,b) NY. /

We warn that
Theorem 2.1.3 (Open and closed subspaces). Let X be a topological space and Y a subspace of X.

Theorem 2.1.4 (Properties of subspaces). Let X be a topological space and Y C X a subspace of X. The
following statements are true.

1. If X is Hausdorff, then Y is too.

Proof. (1) is trivial. TODO: finish theorem and proofs O

Theorem 2.1.5 (Continuous functions and subspaces). Let X, Y be topological spaces, and f : X — Y a continuous
function. Let A C X be a subspace of X. Then, the following are true.

1. The restriction of f to A, denoted f |4, is continuous.
2. IfTCY and T D f[X], then f: X — T is continuous.
3. If Y is a subspace of Z, then f: X — Z is continuous.

2.2 Product topology

Definition 2.2.1 (Product topology). Let X and Y be topological spaces with topologies 7x and 7y respectively.
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Then the set
{UxV:Uerx,Very}

is a basis for a topology on X x Y, and the topology that it generates is called the product topology on X x Y.
TODO: Put stuff

Theorem 2.2.2 (Properties of product topology). Let X,Y be topological spaces.

2.3 Order topology

Definition 2.3.1 (Partial order). Let X be a set. A partial order on X is a set R C X x X such that the
following are true:

1. For all z € X, xRx.
2. For all z,y € X, if xRy and yRx then z =y
3. For all z,y,z € X, if xRy and yRz then zRz.

Property 1 is called reflexivity. Property 2 is called antisymmetry. Property 3 is called transitivity. We can thus
summarize a partial order as being a reflexive, transitive and antisymmetric relation.

We will immediately give some examples to help the reader better understand this.
Example 2.3.2. Let X = N and consider the relation C defined on P(X) by aRb if and only if a« C b. This is a

partial order. /
Example 2.3.3. The real numbers R is equipped with a usual partial order, <. It is not too hard to verify that this
is a partial order. /

It turns out that the partial order on R satisfies an additional property. For instance, given any pair of real numbers,
we can tell which one is the bigger one amongst them.

Definition 2.3.4 (Total order). Let X be a set. A total order on X is a partial order R on X such that for any
xz,y € X, either xRy or yRz.

We will also sometimes call a total order a ”simple order”. A set X with a total order on it is said to be totally
ordered, or simply ordered, or just an ordered set.

Example 2.3.5. Referring back to Example 2.3.2, we notice that the subset relation is a partial order, but definitely
not a total order. For example, we cannot compare {1} and {2} with C, neither is a subset of the other. /

Definition 2.3.6 (Order topology). Let (X, <) be a totally ordered set. Then the order topology on X is
generated by the basis consisting of

o (a,b) where a,be X, a<b
e [a,b) if a is a minimal element of X.

o (a,b]if b is a maximal element of X.

Example 2.3.7. The order topology on R is equal to the usual topology on R. We leave the reader to check this. /

Definition 2.3.8 (Convex (sub)set). Let X be a totally ordered set. Then S C X is said to be convex if given
any z,y € S, [z,y] C X.

Definition 2.3.9 (Linear continuum). Let L be a totally ordered set. Then, L is called a linear continuum if L
has the least upper bound property, and given x,y € L, there exists z such that x < z < y.

CHAPTER 2. CONSTRUCTING SPACES 8
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We will use this definition to prove that intervals and rays are connected in R later on.

TODO: Put more stuff

2.4 Initial and final topologies

TODO: Put stuff

CHAPTER 2. CONSTRUCTING SPACES 9



Chapter 3

Connectedness and Compactness

3.1 Connected spaces

Definition 3.1.1 (Disconnected). Let X be a topological space. Then X is said to be disconnected if there exists
sets U,V that are open in X, disjoint and nonempty and X = U U V. The sets U,V are said to disconnect X.

A space X is said to be connected if it is not disconnected. So the definition of connectedness is literally just the
negation of disconnectedness. A good tip is that if you need to prove something is connected, using contradiction or
contrapositive will work rather well: Simply assume it is disconnected.

We provide some alternative classifications of connected spaces.

Proposition 3.1.2. X is connected if and only if the only sets that are both open and closed in X are & and X.

Proof. If X is disconnected let U,V be open, disjoint and nonempty, such that U UV = X. Then U°€ is closed and it
is V', so V is closed. Thus V is a set that is both closed and open and it is not the empty set or all of X. O

Definition 3.1.3 (Separation). A separation/disconnection of X is a pair of disjoint nonempty sets A, B C X
such that AUB =X, and ANB=9, ANB = 2.

Proposition 3.1.4. X is disconnected if and only if there is a separation of X.
Proof. Exercise. O
The next theorem is a generalization of the fact that any interval in R is connected. It turns out that when proving
that any interval or ray is connected in R, we only needed the fact that R has least upper bounds, and between any 2
distinct elements we can find another element between them.
Theorem 3.1.5. Let X be a linear continuum with the order topology. Then, any C C X that is convex is
connected.
Proof. Let C' C X be convex. Suppose that C' is not connected. Let C'= AU B, where A, B are open in C, nonempty
and disjoint sets. O

We state a sort-of converse to the theorem above, but for R.
Proposition 3.1.6. If Y C R is connected, then Y is a singleton, interval or ray.

We shall proceed with some examples of connected spaces.

Example 3.1.7. R with the usual topology is connected. In fact, any interval in R is connected. /
Example 3.1.8. Let X be a set with at least 2 points and give it the trivial topology. Then X is connected. /
Example 3.1.9. Let X be a singleton. Then X is connected, no matter what the topology on X is. /

10
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Example 3.1.10. (0,1) U (2,3), considered as a subspace of R is clearly disconnected. /

And now some examples of disconnected spaces.

Example 3.1.11. Q is disconnected by Q N (—oc, v/2) and Q(v/2,00). You can play the same trick with any subset
of Q, except singletons. /
Example 3.1.12. The lower limit topology R; is not connected. To see this, note that

R = (—00,0) U0, 00).

We know that (—oo,0) is open, it is the union of open intervals, which is open in R;. Additionally, [0, co] is the union
of half open intervals so it is also open. /

3.2 Properties of connectedness

If X is disconnected by C, D but Y is connected in X, then it makes sense that Y is either in C or in D. The next
lemma makes this precise.
Lemma 3.2.1. Let X be separated by C,D. If Y C X is a connected subspce, then Y C C or'Y C D (but not both).

Proof. If not then Y NC,Y N D disconnects Y. O

Note that in the previous proof, we are using the fact that f restricted to Y is still continuous.

The next theorem can arguably be called the fundamental theorem of connectedness. It tells us that the image of a
connected space is connected.

Theorem 3.2.2 (Connectedness is a topological invariant). Let f : X — Y be a continuous function and X be a
connected space. Then, f[X] is connected.

Proof. Suppose that f[X] is disconnected by C, D. Then f~1(C) and f~1(D) disconnect X. O
Corollary 3.2.3. If X is homeomorphic to' Y and X is connected, so is Y .

Now we get the intermediate value theorem for free. Really, this should be a corollary.

Theorem 3.2.4 (Intermediate value theorem). Let X be a connected space and Y be a linear continuum. Let
f: X — Y be a continuous function. For any a,b € X, and ¢ € Y such that f(a) < ¢ < f(b), there is z € X
such that f(z) = c.

Proof. Follows from Theorem 3.2.2 and Theorem 3.2.2. O

For the usual intermediate value theorem of calculus, put X to be an interval and Y to be R.

We then provide some ways to construct new connected spaces.

Theorem 3.2.5 (Properties of connectedness). Let X be a topological space.
1. If { Yy },ep is a family of connected subspaces of X and y € Y, for all a, then (J,c, Yo is connected.

2. If A C X is connected, then A is connected. Additionally, if B is such that A C B C A, then B is
connected.

3. If X,Y are connected spaces, then X x Y is connected.

Proof. For (1), suppose the union is disconnected by C,D. Let o € A be whatever. Then by Lemma 3.2.1, and
without loss of generality, Y, C C. Since D is nonempty there must be some 3 such that Yg C D. But this means
a € C and a € D. Oops!

CHAPTER 3. CONNECTEDNESS AND COMPACTNESS 11
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For (2), suppose A is disconnected by C, D. Since A is connected, without loss of generality suppose A C C. Then as
D is nonempty, let y € D. Write D = U N A where U is open in X. But U is an open neighborhood of y that does
not intersect A, a contradiction. The additional remark is left to the reader.

For (3), let (a,b) € X x Y. Notice that X x {b} is connected as it is homeomorphic to X. Now, let x € X, then we
see that {z} x Y is connected too as it is homeomorphic to Y. Define

T, = (X x{bhU({=z}xY).

Then T}, is connected as the point (a,b) is in (X x {b}) and ({x} x Y) (use part 1). Then X = J .y T, This is
connected as it is the union of a collection of connected subspaces with a point in common. For if z,z’ € X, then the
point (a,b) € T, N T, by definition. O
Since (X1 X -+ x X,;) X Xp41 is homeomorphic to X x - - - X X, 41, finite products of connected spaces are connected.
It is important to note that connectedness may not extend to arbitrary products.

Example 3.2.6. R“ with the box topology is not connected. TODO: Include proof /
Example 3.2.7. R* with the product topology is connected. TODO: Include proof /
3.3 Path connectedness

Path connectedness is a more intuitive notion of connectedness. It essentially says, given any 2 points in a topological
space, if we can draw a line between them, and the line stays in the topological space, then it is connected.

Definition 3.3.1 (Path). Let X be a topological space and z,y € X. A path from z to y is a continuous function

p:[0,1] — X such that p(0) =z and p(1) = y.

Definition 3.3.2 (Path-connectedness). Let X be a topological space. Then X is path-connected if given any
x,y € X, there is a path p from z to y such that p[[0,1]] C X.

Path connectedness is a sufficient condition for connectedness.

Theorem 3.3.3 (Path-connectedness implies connectedness). Let X be a topological space. If X is path connected,
then X is connected.

Proof. Suppose not. Let C, D disconnect X. Let ¢ € C' and d € D, since both are nonempty. Since X is path
connected let p : [0,1] — X be a path from ¢ to d. [0,1] is connected so p[[0, 1]] is also connected. However,

p[[0,1]] = (€ np[[0, 1]]) U (D N p[[0, 1]]).

This is a disconnection of p[[0, 1]], contradicting the fact that p[[0, 1]] is connected. O

Example 3.3.4. Now that we have path connectedness, it is easy to prove that R™ is connected. Pick any z,y € R"”
and define p(t) = (1 — t)x + ty. Observe that p is a straight line path from z to y and the straight line lies in R™. It
is also continuous. /

The converse of this theorem is untrue. The most famous example of this is called the topologist’s sine curve.
Example 3.3.5 (The topologist’s sine curve). Let Tp = { (z,sin1/z) : 2 € (0,1] } and let T4 = { (0,y) : y € [-1,1] }.
The topologist’s sine curve is defined to be T' = Ty U T;. It is not hard to see that T is connected. Tj is the image of
(0, 1] under a continuous function, so it is connected. Notice that T3 is the set of limit points of Tj. By part (2) of
Theorem 3.2.5, T' is connected.

We shall now show that T is not path connected. TODO: finish /

Theorem 3.3.6 (Properties of path-connected spaces). Let X be a topological space. TODO: finish

CHAPTER 3. CONNECTEDNESS AND COMPACTNESS 12
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3.4 Compactness

Compactness is arguably the most important concept in all of topology. Compactness captures the idea of what it
means for a set to be "finite”-ish.

Definition 3.4.1 (Open cover). Let X be a topological space. An open cover of X is a collection U of open
subsets of X such that JU = X.

We can get the definition for a cover of X by removing all mentions of the word ”open” from the above definition.

To help with digesting this definition we give some examples of open covers.
Example 3.4.2. Let X = R. Consider the collection 4 = {(n,n+1):n €Z} of open intervals with integer
endpoints. This is an open cover of X. TODO: Draw a picture /

Definition 3.4.3 (Finite subcover). If ¢/ is an open cover of X, then a finite subcover is a collection of sets
Ui,...,U, €U such that |J;_, U; = X.

Definition 3.4.4 (Compactness). Let X be a topological space. Then X is said to be compact if given any open
cover of X, there is a finite subcover.

We emphasize here that for a set to be compact, you must be able to extract a finite subcover from any open cover
whatsoever.

Example 3.4.5. Let X be any finite set and give X any topology. Then X is compact. /
Example 3.4.6. The set R with the usual topology is definitely not compact. The cover Y = { (n,n+ 1) :n € Z}
has no finite subcover. /

If we have a subspace, then the following proposition provides a more convenient way to characterize whether a
subspace is compact in the subspace topology.

Proposition 3.4.7 (Compactness in subspace). Let X be a topological space and'Y be a subspace of X. Then'Y is
compact in the subspace topology if and only if every cover of Y by open sets of X has a finite subcover.

Proof. We shall not insult the reader’s intelligence by providing a proof of this. O

Example 3.4.8. Take R with the usual topology and consider the open interval (0,1). We will show this is not
compact. Consider the open cover U = {(1/n,1) : n € N}. Indeed, JU = (0,1), but any finite subcover will be
missing points of the form 1/k. /

CHAPTER 3. CONNECTEDNESS AND COMPACTNESS 13
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