

Point Set Topology Notes

Robert

June 2024

Abstract

Note that this is still a work in progress. Any corrections are welcome and should be directed to robert [dot] xiu [at] mail [dot] utoronto [dot] ca. Alternatively, if you have me on your discord friend's list, let me know directly.

List of Definitions

1.0.1 Definition (Topology)	3
1.0.5 Definition (Open set)	3
1.0.7 Definition (Neighborhood)	3
1.1.1 Definition	3
1.1.3 Definition	4
1.2.1 Definition (Closed set)	4
1.2.4 Definition (Interior)	4
1.2.6 Definition (Closure)	4
1.2.8 Definition (Boundary)	4
1.2.10 Definition (Limit point)	4
1.2.12 Definition (Convergence)	5
1.3.1 Definition (Hausdorff space)	6
1.4.1 Definition (Continuity)	6
2.1.1 Definition (Subspace topology)	7
2.2.1 Definition (Product topology)	7
2.3.1 Definition (Partial order)	8
2.3.4 Definition (Total order)	8
2.3.6 Definition (Order topology)	8
2.3.8 Definition (Convex (sub)set)	8
2.3.9 Definition (Linear continuum)	8
3.1.1 Definition (Disconnected)	10
3.1.3 Definition (Separation)	10
3.3.1 Definition (Path)	12
3.3.2 Definition (Path-connectedness)	12
3.4.1 Definition (Open cover)	13
3.4.3 Definition (Finite subcover)	13
3.4.4 Definition (Compactness)	13

List of Theorems

2.1.3 Theorem (Open and closed subspaces)	7
2.1.4 Theorem (Properties of subspaces)	7
2.1.5 Theorem (Continuous functions and subspaces)	7
2.2.2 Theorem (Properties of product topology)	8
3.1.5 Theorem	10
3.2.2 Theorem (Connectedness is a topological invariant)	11
3.2.4 Theorem (Intermediate value theorem)	11
3.2.5 Theorem (Properties of connectedness)	11
3.3.3 Theorem (Path-connectedness implies connectedness)	12
3.3.6 Theorem (Properties of path-connected spaces)	12

Chapter 1

Topologies and bases

Definition 1.0.1 (Topology). A topology on X is a set $\tau \subseteq \mathcal{P}(X)$ such that

1. $\emptyset, X \in \tau$,
2. If $\{U_\alpha : \alpha \in \Lambda\} \subseteq \tau$, then $\bigcup_{\alpha \in \Lambda} U_\alpha \in \tau$.
3. If $U_1, \dots, U_n \in \tau$, then $\bigcap_{i=1}^n U_i \in \tau$.

When talking to your friends, you might introduce it as "a topology is a subset of the power set of X that contains the empty set, X , and it is closed under arbitrary unions and finite intersections.

A topological space X is a set with a topology τ . When we are only working with one topology, we will abuse notation and simply call a set X a topological space with no explicit mention of the topology.

When we say \mathbb{R} is a topological space, it is usually understood that the topology on \mathbb{R} is the usual topology on \mathbb{R} .

Example 1.0.2. Take \mathbb{R} and the topology on \mathbb{R} to be arbitrary unions and finite intersections of open intervals. //

Example 1.0.3. Let X be any set and let $\tau = \{\emptyset, X\}$. This is a topology on X , it is the smallest topology on X and it is called the **trivial/indiscrete topology** on X . //

Example 1.0.4. Let X be any set and let $\tau = \mathcal{P}(X)$. Then this is a topology on X and it is the largest topology on X . It is called the **discrete topology** on X . //

Definition 1.0.5 (Open set). Let X be a set with topology τ . An element $O \in \tau$ is called an **open subset of X** , or an **open set**. If $O \subseteq X$ and we say that O is open in X , it means that $O \in \tau$.

Example 1.0.6. Every open interval in \mathbb{R} is open. //

Definition 1.0.7 (Neighborhood). Let X be a topological space with topology τ and $x \in X$. Then a set U is a **(open) neighborhood of x** if $x \in U$ and $U \in \tau$.

Note that we sometimes will simply say neighborhood of x . Neighborhoods are always understood to be open. If the neighborhood is not open, it will be stated explicitly.

1.1 Basis and subbasis

Definition 1.1.1. Let X be a set. Then $\mathcal{B} \subseteq \mathcal{P}(X)$ is a **basis** (for a topology) on X if

- For every $x \in X$, there is a $B \in \mathcal{B}$ such that $x \in B$.
- For every $B_1, B_2 \in \mathcal{B}$, for every $x \in B_1 \cap B_2$, there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Lemma 1.1.2. Let X be a set and τ, τ' be topologies on X . Let \mathcal{B} be a basis for τ and \mathcal{B}' be a basis for τ' . Then, $\tau \subseteq \tau'$ if and only if for every $x \in X$ and every $B \in \mathcal{B}$ such that $x \in B$, there exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.

Loosely speaking, this says that τ' is finer than τ if and only if given any basis element B of τ we can find a basis element of τ' that is contained within B .

Note that it is sufficient to find $U \in \tau'$ such that $x \in U$ and $U \subseteq B$, as every open set is the union of basis elements.

Definition 1.1.3. Let X be a set. $\mathcal{S} \subseteq \mathcal{P}(X)$ is a **subbasis** if $\bigcup \mathcal{S} = X$. The topology generated by \mathcal{S} is the unions of finite intersections of elements of \mathcal{S} .

Note that a subbasis can be used to generate a basis as well.

Example 1.1.4. The lower limit topology on \mathbb{R} is finer than the usual topology. Let $\mathcal{B} = \{ [a, b) : a < b, a, b \in \mathbb{R} \}$ be the usual basis of the lower limit topology. The usual topology has a basis of open intervals, $\{ (a, b) : a < b, a, b \in \mathbb{R} \}$. Take any $x \in \mathbb{R}$ and any open interval (a, b) that contains x . Then notice that $[x, b) \subseteq (a, b)$ and $[x, b) \in \mathcal{B}$. //

1.2 Closed sets, interiors and boundaries

Definition 1.2.1 (Closed set). Let X be a topological space. A set $C \subseteq X$ is **closed** if $X \setminus C$ is open.

Note that a set can be both open and closed at the same time. We call such sets **clopen**.

Example 1.2.2. In any topological space X , \emptyset and X are closed. //

Example 1.2.3. In \mathbb{R} , any closed interval $[a, b]$ is closed. //

Definition 1.2.4 (Interior). Let X be a topological space and $A \subseteq X$. Then the **interior of A** , denoted A° is defined to be

$$A^\circ = \bigcup \{ U \subseteq A : U \text{ is open} \}.$$

The definition says that the interior of A is the union of all the open sets that are contained within A . Put differently, the interior of a set A is the largest open set contained in A .

Exercise 1.2.5. Prove the remark above.

Definition 1.2.6 (Closure). The **closure** of $A \subseteq X$, denoted \overline{A} , is defined to be

$$\overline{A} = \bigcap \{ C \supseteq A : C \text{ is closed} \}.$$

The above definition simply says that the closure of A is the intersection of all closed sets that contain A . Thus the closure of a set is the smallest closed set contained in A .

Exercise 1.2.7. Prove the remark above.

Definition 1.2.8 (Boundary). Let X be a topological space. Let $A \subseteq X$. Then the **boundary of A** , denoted ∂A , is defined as $\overline{A} \cap \overline{X \setminus A}$.

Lemma 1.2.9. $x \in \partial A$ if and only if any open neighborhood of x intersects A and $X \setminus A$.

Proof. Left to reader. □

Definition 1.2.10 (Limit point). Let X be a topological space and $A \subseteq X$. A point $x \in X$ is a **limit point of A** if any neighborhood of x intersects $A \setminus \{x\}$.

Proposition 1.2.11. Let X be a topological space and $A \subseteq X$. Then $\overline{A} = A \cup L_A$, where L_A is the set of limit points of A .

Proof. Exercise. □

Definition 1.2.12 (Convergence). Let $(x_n) \subseteq X$ be a sequence. Then, (x_n) is said to **converge to x** , and we write $(x_n) \rightarrow x$ (or $\lim_{n \rightarrow \infty} x_n = x$) if given any neighborhood U of x , there is an $N \in \mathbb{N}$ such that if $n \geq N$, $x_n \in U$. We say that x is a **limit** of x_n .

Note how similar this is to the definition of convergence in \mathbb{R} (or \mathbb{R}^n). In fact, they are equivalent. We leave it to the reader to prove this.

Exercise 1.2.13. Show that in \mathbb{R} with the usual topology, a sequence x_n converges to x in the usual epsilon-N sense if and only if it converges in the topological definition.

We must warn the reader that *limits may not be unique*. That is why we say "a" limit, not "the" limit.

Example 1.2.14. Let $X = \mathbb{R}$ and give it the trivial topology. Then any sequence in X converges to any point in X . //

We shall quickly summarize some useful results from this section.

Proposition 1.2.15 (Criterion for openness). *Let $A \subseteq X$. Then, the following are equivalent:*

- *A is open.*
- $A = A^\circ$.
- *A has no boundary points.*
- *Every point of A has a neighborhood contained in A.*

Proof. Relatively easy. □

Proposition 1.2.16 (Criterion for closedness). *Let $A \subseteq X$. Then, the following are equivalent:*

- *A is closed.*
- $A = \overline{A}$.
- *Every boundary point of A is in A.*
- *Every point of A^c has a neighborhood contained in A^c .*

Proof. Not hard. □

1.3 Hausdorff spaces

Definition 1.3.1 (Hausdorff space). A topological space X is called Hausdorff if given $x, y \in X$ such that $x \neq y$, there exists disjoint open neighborhoods U of x and V of y such that $U \cap V = \emptyset$.

Example 1.3.2. \mathbb{R} is a Hausdorff space. Any \mathbb{R}^n is a Hausdorff space. Any metric space is Hausdorff. Given $x \neq y$ in a metric space, let $r = d(x, y)/2$. Then a ball of radius r around x and around y are disjoint. //

Example 1.3.3. Let X be a set with more than one point and give it the trivial topology. Then X is not Hausdorff. //

Lemma 1.3.4. If X is a Hausdorff space and $x \in X$, then $\{x\}$ is closed.

Proof. We simply need to show that $X \setminus \{x\}$ is open. Let $y \in X \setminus \{x\}$. Then $y \neq x$, so there are disjoint neighborhoods U, V of y and x respectively. Then $U \subseteq X \setminus \{x\}$. \square

It immediately follows that finite point sets are closed.

One useful property of a Hausdorff space is the fact that if we have a sequence, it has a unique limit.

Proposition 1.3.5. In a Hausdorff space, limits are unique.

Proof. Suppose not. Let $(x_n) \rightarrow x$ and $(x_n) \rightarrow y$ where $x \neq y$. Let U, V be disjoint neighborhoods of x and y respectively. Then, there is N_1 such that $x_{N_1} \in U$ and N_2 such that $x_{N_2} \in V$. Let $N = \max\{N_1, N_2\}$. Then $x_N \in U \cap V$. But U, V are disjoint. Oops! \square

Since \mathbb{R} is a Hausdorff space this proves that limits are unique in \mathbb{R} .

1.4 Continuous functions

Definition 1.4.1 (Continuity). Let X, Y be topological spaces and $f : X \rightarrow Y$. Then f is said to be **continuous** if for every open subset O of Y , $f^{-1}(O)$ is open in X .

Proposition 1.4.2. Let $f : \mathbb{R} \rightarrow \mathbb{R}$. Then f is continuous in the epsilon-delta sense if and only if f is continuous in the topological sense.

Proposition 1.4.3 (Continuity with closed sets). Let X, Y be topological spaces and $f : X \rightarrow Y$. Then f is continuous if and only if given a closed set $C \subseteq Y$, $f^{-1}(C)$ is closed in X .

Chapter 2

Constructing spaces

2.1 Subspace topology

Definition 2.1.1 (Subspace topology). Let X be a topological space with topology τ and Y *any* subset of X . Then the set

$$\{U \cap Y : U \in \tau\}$$

is a basis for a topology on Y , and the topology it generates is called the **subspace topology on Y** (from X). We then call Y a **subspace of X** .

It is important to note that this is very much unlike what subspaces are in linear algebra. We emphasize that *any* subset of a topological space whatsoever can be given the subspace topology.

Example 2.1.2. Let $X = \mathbb{R}$ with the usual topology and $Y = (0, 1)$, giving Y the subspace topology from X . What do the open sets of Y look like? Well, if $(a, b) \subseteq Y$, then (a, b) is open in Y as $(a, b) = (a, b) \cap Y$. //

We warn that

Theorem 2.1.3 (Open and closed subspaces). Let X be a topological space and Y a subspace of X .

Theorem 2.1.4 (Properties of subspaces). Let X be a topological space and $Y \subseteq X$ a subspace of X . The following statements are true.

1. If X is Hausdorff, then Y is too.

Proof. (1) is trivial. **TODO: finish theorem and proofs** □

Theorem 2.1.5 (Continuous functions and subspaces). Let X, Y be topological spaces, and $f : X \rightarrow Y$ a continuous function. Let $A \subseteq X$ be a subspace of X . Then, the following are true.

1. The restriction of f to A , denoted $f|_A$, is continuous.
2. If $T \subseteq Y$ and $T \supseteq f[A]$, then $f : X \rightarrow T$ is continuous.
3. If Y is a subspace of Z , then $f : X \rightarrow Z$ is continuous.

2.2 Product topology

Definition 2.2.1 (Product topology). Let X and Y be topological spaces with topologies τ_X and τ_Y respectively.

Then the set

$$\{ U \times V : U \in \tau_X, V \in \tau_Y \}$$

is a basis for a topology on $X \times Y$, and the topology that it generates is called the *product topology on $X \times Y$* .

TODO: Put stuff

Theorem 2.2.2 (Properties of product topology). Let X, Y be topological spaces.

2.3 Order topology

Definition 2.3.1 (Partial order). Let X be a set. A **partial order on X** is a set $R \subseteq X \times X$ such that the following are true:

1. For all $x \in X$, xRx .
2. For all $x, y \in X$, if xRy and yRx then $x = y$
3. For all $x, y, z \in X$, if xRy and yRz then xRz .

Property 1 is called reflexivity. Property 2 is called antisymmetry. Property 3 is called transitivity. We can thus summarize a partial order as being a reflexive, transitive and antisymmetric relation.

We will immediately give some examples to help the reader better understand this.

Example 2.3.2. Let $X = \mathbb{N}$ and consider the relation \subseteq defined on $\mathcal{P}(X)$ by aRb if and only if $a \subseteq b$. This is a partial order. //

Example 2.3.3. The real numbers \mathbb{R} is equipped with a usual partial order, \leq . It is not too hard to verify that this is a partial order. //

It turns out that the partial order on \mathbb{R} satisfies an additional property. For instance, given any pair of real numbers, we can tell which one is the bigger one amongst them.

Definition 2.3.4 (Total order). Let X be a set. A **total order on X** is a partial order R on X such that for any $x, y \in X$, either xRy or yRx .

We will also sometimes call a total order a "simple order". A set X with a total order on it is said to be *totally ordered*, or *simply ordered*, or just an *ordered set*.

Example 2.3.5. Referring back to [Example 2.3.2](#), we notice that the subset relation is a partial order, but definitely not a total order. For example, we cannot compare $\{1\}$ and $\{2\}$ with \subseteq , neither is a subset of the other. //

Definition 2.3.6 (Order topology). Let (X, \leq) be a totally ordered set. Then the **order topology** on X is generated by the basis consisting of

- (a, b) where $a, b \in X$, $a < b$
- $[a, b)$ if a is a minimal element of X .
- $(a, b]$ if b is a maximal element of X .

Example 2.3.7. The order topology on \mathbb{R} is equal to the usual topology on \mathbb{R} . We leave the reader to check this. //

Definition 2.3.8 (Convex (sub)set). Let X be a totally ordered set. Then $S \subseteq X$ is said to be **convex** if given any $x, y \in S$, $[x, y] \subseteq X$.

Definition 2.3.9 (Linear continuum). Let L be a totally ordered set. Then, L is called a **linear continuum** if L has the least upper bound property, and given $x, y \in L$, there exists z such that $x < z < y$.

We will use this definition to prove that intervals and rays are connected in \mathbb{R} later on.

TODO: Put more stuff

2.4 Initial and final topologies

TODO: Put stuff

Chapter 3

Connectedness and Compactness

3.1 Connected spaces

Definition 3.1.1 (Disconnected). Let X be a topological space. Then X is said to be **disconnected** if there exists sets U, V that are open in X , disjoint and nonempty and $X = U \cup V$. The sets U, V are said to **disconnect** X .

A space X is said to be **connected** if it is not disconnected. So the definition of connectedness is literally just the negation of disconnectedness. A good tip is that if you need to prove something is connected, using contradiction or contrapositive will work rather well: Simply assume it is disconnected.

We provide some alternative classifications of connected spaces.

Proposition 3.1.2. X is connected if and only if the only sets that are both open and closed in X are \emptyset and X .

Proof. If X is disconnected let U, V be open, disjoint and nonempty, such that $U \cup V = X$. Then U^c is closed and it is V , so V is closed. Thus V is a set that is both closed and open and it is not the empty set or all of X . \square

Definition 3.1.3 (Separation). A **separation/disconnection** of X is a pair of disjoint nonempty sets $A, B \subseteq X$ such that $A \cup B = X$, and $\overline{A} \cap B = \emptyset, A \cap \overline{B} = \emptyset$.

Proposition 3.1.4. X is disconnected if and only if there is a separation of X .

Proof. Exercise. \square

The next theorem is a generalization of the fact that any interval in \mathbb{R} is connected. It turns out that when proving that any interval or ray is connected in \mathbb{R} , we only needed the fact that \mathbb{R} has least upper bounds, and between any 2 distinct elements we can find another element between them.

Theorem 3.1.5. Let X be a linear continuum with the order topology. Then, any $C \subseteq X$ that is convex is connected.

Proof. Let $C \subseteq X$ be convex. Suppose that C is not connected. Let $C = A \cup B$, where A, B are open in C , nonempty and disjoint sets. \square

We state a sort-of converse to the theorem above, but for \mathbb{R} .

Proposition 3.1.6. If $Y \subseteq \mathbb{R}$ is connected, then Y is a singleton, interval or ray.

We shall proceed with some examples of connected spaces.

Example 3.1.7. \mathbb{R} with the usual topology is connected. In fact, any interval in \mathbb{R} is connected. \square

Example 3.1.8. Let X be a set with at least 2 points and give it the trivial topology. Then X is connected. \square

Example 3.1.9. Let X be a singleton. Then X is connected, no matter what the topology on X is. \square

Example 3.1.10. $(0, 1) \cup (2, 3)$, considered as a subspace of \mathbb{R} is clearly disconnected. //

And now some examples of disconnected spaces.

Example 3.1.11. \mathbb{Q} is disconnected by $\mathbb{Q} \cap (-\infty, \sqrt{2})$ and $\mathbb{Q} \cap (\sqrt{2}, \infty)$. You can play the same trick with any subset of \mathbb{Q} , except singletons. //

Example 3.1.12. The lower limit topology \mathbb{R}_l is not connected. To see this, note that

$$\mathbb{R} = (-\infty, 0) \cup [0, \infty).$$

We know that $(-\infty, 0)$ is open, it is the union of open intervals, which is open in \mathbb{R}_l . Additionally, $[0, \infty)$ is the union of half open intervals so it is also open. //

3.2 Properties of connectedness

If X is disconnected by C, D but Y is connected in X , then it makes sense that Y is either in C or in D . The next lemma makes this precise.

Lemma 3.2.1. *Let X be separated by C, D . If $Y \subseteq X$ is a connected subspace, then $Y \subseteq C$ or $Y \subseteq D$ (but not both).*

Proof. If not then $Y \cap C, Y \cap D$ disconnects Y . \square

Note that in the previous proof, we are using the fact that f restricted to Y is still continuous.

The next theorem can arguably be called the fundamental theorem of connectedness. It tells us that the image of a connected space is connected.

Theorem 3.2.2 (Connectedness is a topological invariant). Let $f : X \rightarrow Y$ be a continuous function and X be a connected space. Then, $f[X]$ is connected.

Proof. Suppose that $f[X]$ is disconnected by C, D . Then $f^{-1}(C)$ and $f^{-1}(D)$ disconnect X . \square

Corollary 3.2.3. *If X is homeomorphic to Y and X is connected, so is Y .*

Now we get the intermediate value theorem for free. Really, this should be a corollary.

Theorem 3.2.4 (Intermediate value theorem). Let X be a connected space and Y be a linear continuum. Let $f : X \rightarrow Y$ be a continuous function. For any $a, b \in X$, and $c \in Y$ such that $f(a) < c < f(b)$, there is $x \in X$ such that $f(x) = c$.

Proof. Follows from [Theorem 3.2.2](#) and [Theorem 3.2.2](#). \square

For the usual intermediate value theorem of calculus, put X to be an interval and Y to be \mathbb{R} .

We then provide some ways to construct new connected spaces.

Theorem 3.2.5 (Properties of connectedness). Let X be a topological space.

1. If $\{Y_\alpha\}_{\alpha \in \Lambda}$ is a family of connected subspaces of X and $y \in Y_\alpha$ for all α , then $\bigcup_{\alpha \in \Lambda} Y_\alpha$ is connected.
2. If $A \subseteq X$ is connected, then \overline{A} is connected. Additionally, if B is such that $A \subseteq B \subseteq \overline{A}$, then B is connected.
3. If X, Y are connected spaces, then $X \times Y$ is connected.

Proof. For (1), suppose the union is disconnected by C, D . Let $\alpha \in \Lambda$ be whatever. Then by [Lemma 3.2.1](#), and without loss of generality, $Y_\alpha \subseteq C$. Since D is nonempty there must be some β such that $Y_\beta \subseteq D$. But this means $a \in C$ and $a \in D$. Oops!

For (2), suppose \overline{A} is disconnected by C, D . Since A is connected, without loss of generality suppose $A \subseteq C$. Then as D is nonempty, let $y \in D$. Write $D = U \cap \overline{A}$ where U is open in X . But U is an open neighborhood of y that does not intersect A , a contradiction. The additional remark is left to the reader.

For (3), let $(a, b) \in X \times Y$. Notice that $X \times \{b\}$ is connected as it is homeomorphic to X . Now, let $x \in X$, then we see that $\{x\} \times Y$ is connected too as it is homeomorphic to Y . Define

$$T_x = (X \times \{b\}) \cup (\{x\} \times Y).$$

Then T_x is connected as the point (a, b) is in $(X \times \{b\})$ and $(\{x\} \times Y)$ (use part 1). Then $X = \bigcup_{x \in X} T_x$. This is connected as it is the union of a collection of connected subspaces with a point in common. For if $x, x' \in X$, then the point $(a, b) \in T_x \cap T_{x'}$ by definition. \square

Since $(X_1 \times \cdots \times X_n) \times X_{n+1}$ is homeomorphic to $X_1 \times \cdots \times X_{n+1}$, finite products of connected spaces are connected.

It is important to note that connectedness may not extend to arbitrary products.

Example 3.2.6. \mathbb{R}^ω with the box topology is not connected. **TODO: Include proof**

Example 3.2.7. \mathbb{R}^ω with the product topology is connected. **TODO: Include proof**

3.3 Path connectedness

Path connectedness is a more intuitive notion of connectedness. It essentially says, given any 2 points in a topological space, if we can draw a line between them, and the line stays in the topological space, then it is connected.

Definition 3.3.1 (Path). Let X be a topological space and $x, y \in X$. A **path** from x to y is a continuous function $p : [0, 1] \rightarrow X$ such that $p(0) = x$ and $p(1) = y$.

Definition 3.3.2 (Path-connectedness). Let X be a topological space. Then X is **path-connected** if given any $x, y \in X$, there is a path p from x to y such that $p[[0, 1]] \subseteq X$.

Path connectedness is a sufficient condition for connectedness.

Theorem 3.3.3 (Path-connectedness implies connectedness). Let X be a topological space. If X is path connected, then X is connected.

Proof. Suppose not. Let C, D disconnect X . Let $c \in C$ and $d \in D$, since both are nonempty. Since X is path connected let $p : [0, 1] \rightarrow X$ be a path from c to d . $[0, 1]$ is connected so $p[[0, 1]]$ is also connected. However,

$$p[[0, 1]] = (C \cap p[[0, 1]]) \cup (D \cap p[[0, 1]]).$$

This is a disconnection of $p[[0, 1]]$, contradicting the fact that $p[[0, 1]]$ is connected. \square

Example 3.3.4. Now that we have path connectedness, it is easy to prove that \mathbb{R}^n is connected. Pick any $x, y \in \mathbb{R}^n$ and define $p(t) = (1-t)x + ty$. Observe that p is a straight line path from x to y and the straight line lies in \mathbb{R}^n . It is also continuous. \square

The converse of this theorem is untrue. The most famous example of this is called the topologist's sine curve.

Example 3.3.5 (The topologist's sine curve). Let $T_0 = \{(x, \sin 1/x) : x \in (0, 1]\}$ and let $T_1 = \{(0, y) : y \in [-1, 1]\}$. The topologist's sine curve is defined to be $T = T_0 \cup T_1$. It is not hard to see that T is connected. T_0 is the image of $(0, 1]$ under a continuous function, so it is connected. Notice that T_1 is the set of limit points of T_0 . By part (2) of [Theorem 3.2.5](#), T is connected.

We shall now show that T is not path connected. **TODO: finish**

Theorem 3.3.6 (Properties of path-connected spaces). Let X be a topological space. **TODO: finish**

3.4 Compactness

Compactness is arguably the most important concept in all of topology. Compactness captures the idea of what it means for a set to be "finite"-ish.

Definition 3.4.1 (Open cover). Let X be a topological space. An **open cover of X** is a collection \mathcal{U} of open subsets of X such that $\bigcup \mathcal{U} = X$.

We can get the definition for a cover of X by removing all mentions of the word "open" from the above definition.

To help with digesting this definition we give some examples of open covers.

Example 3.4.2. Let $X = \mathbb{R}$. Consider the collection $\mathcal{U} = \{(n, n+1) : n \in \mathbb{Z}\}$ of open intervals with integer endpoints. This is an open cover of X . **TODO: Draw a picture** //

Definition 3.4.3 (Finite subcover). If \mathcal{U} is an open cover of X , then a **finite subcover** is a collection of sets $U_1, \dots, U_n \in \mathcal{U}$ such that $\bigcup_{i=1}^n U_i = X$.

Definition 3.4.4 (Compactness). Let X be a topological space. Then X is said to be **compact** if given *any* open cover of X , there is a finite subcover.

We emphasize here that for a set to be compact, you must be able to extract a finite subcover from *any* open cover whatsoever.

Example 3.4.5. Let X be any finite set and give X any topology. Then X is compact. //

Example 3.4.6. The set \mathbb{R} with the usual topology is definitely not compact. The cover $\mathcal{U} = \{(n, n+1) : n \in \mathbb{Z}\}$ has no finite subcover. //

If we have a subspace, then the following proposition provides a more convenient way to characterize whether a subspace is compact in the subspace topology.

Proposition 3.4.7 (Compactness in subspace). Let X be a topological space and Y be a subspace of X . Then Y is compact in the subspace topology if and only if every cover of Y by open sets of X has a finite subcover.

Proof. We shall not insult the reader's intelligence by providing a proof of this. \square

Example 3.4.8. Take \mathbb{R} with the usual topology and consider the open interval $(0, 1)$. We will show this is not compact. Consider the open cover $\mathcal{U} = \{(1/n, 1) : n \in \mathbb{N}\}$. Indeed, $\bigcup \mathcal{U} = (0, 1)$, but any finite subcover will be missing points of the form $1/k$. //