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1 Recall

Recall from last lecture
Lemma 1.1 (Fatou’s Lemma). Let E € M, m(E) < oco. Let { f, } be a sequence of measurable non-negative
functions with domain E. If f, — f pointwise a.e. on E, then [, f <liminf [, f,

Proof. annoying O

2 Monotone Convergence Theorem

Theorem 2.1 (Monotone Convergence Theorem). Let E € M and m(F) < co. Let { f,, } be a sequence
of extended real-valued measurable functions with domain E, such that 0 < fi(z) < --- < fu(x) <
frny1(z) <--- on E. If f,, — f pointwise a.e. on E, then limy, o [ fn = [ f-

Remark 2.2. Some books require pointwise (not a.e.), some books keep it only real valued. The proof is
similar for any of these. For instance, Folland would require that it converges pointwise, not just a.e. This is
because Folland has propositions that let you deal with a.e. in great generality.

The proof will begin by applying Fatou’s Lemma immediately. This gives us lim inf f gln 2 f g [ What we
need to do is to get fE f > limsup fE fn. Recall that if x,, is a sequence and we have limsup z,, < limz,, <
liminf z,, then we have lim sup z,, = liminf z,, = lim x,,.

Proof. By Fatou’s Lemma (Lemma 1.1), we already have [, < liminf [}, f,. Now, since f, < foq1, we
have f, < f a.e., so we have that fE fn < fE f (follows by basic integral properties). (Another way to
see this is that { [ 5 fn } is nothing but a sequence of numbers, so it is immediate.) Now this means that
limsup [}, fn <limsup [, f = [, f. So we are done. O

Remark 2.3. You can prove Fatou’s Lemma (Lemma 1.1) with MCT (Theorem 2.1). See Folland, Lemma
2.18. In fact Fatou’s Lemma and MCT are equivalent.

Exercise 2.4. Assume the Monotone Convergence Theorem and prove Fatou’s Lemma. Hint: No hints, this
is C' level course.

For the answer to this exercise, see Folland Lemma 2.18.
Example 2.5. Let « € R and let f:[0,1] — [0, o], given by

fa) = {x_“ if x €10,1]

00 ifx=0
Notice that we can define a sequence of functions

_Jam ifxe1/n,1]
ful@) = {n“ if x €10,1/n)

Of course each f,, is measurable. It is easy to see that { f,, } — f on [0, 1], and it is increasing. Thus we
apply the monotone convergence theorem to conclude that lim [ f,, = [ f. (Note that the domain we are
integrating over has been omitted, but it is [0, 1]. T did not put it in the subscript to make it cleaner.)  /

An immediate application of the monotone convergence theorem is to show that the integral is countably
additive, see Folland Theorem 2.15.
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3 Dominated Convergence Theorem

The Lebesgue Dominated Convergence Theorem is easily the most powerful convergence theorem. The
conditions on the sequence of functions are looser than other convergence theorems:

1. Domain we are integrating on need not be bounded (unlike the bounded convergence theorem)
2. Sequence of functions do not have to be increasing.

3. The pointwise limit function need not be assumed to be integrable.

Theorem 3.1 (Lebesgue’s Dominated Convergence Theorem). Let E € M, and m(E) < oco. Let { f» }
be a sequence of real-valued measurable functions with domain E. If f,, — f a.e. on E and there
is a g, nonnegative, integrable on F, such that |f,(z)| < g(z) a.e., then f is integrable on E, and

lim [, fn = [ f-

Keep in mind that integrable means [ |g| < oo. Since g = |g| as g is nonnegative, [ g = [|g].

For the proof, we shall produce 2 sequences of nonnegative functions: ¢ — f, and g + f,' We take their
integrals, and apply Fatou’s Lemma. A neat trick to recall is that given a sequence (z,,), we have lim inf —z,, =
—limsup z,,. You will see this trick happening in Equation (2). This will leave us with liminf f,, > [ f >
lim sup f,, which will prove the result.

Proof. Clearly f is measurable. To see that f is integrable, we can see that lim|f,| = lim|f| < g, so
J1f1 < [ g < co. Now consider the sequences of functions, (¢ — f,) and (g + f,). Both of these sequences
are measurable and nonnegative. (Proving that this is true is left as an exercise. Intuitively, we can see that
if f, is being negative then g + f,, is still bigger than 0 since g is bigger than the size of the negativity of f,.
Similar idea for g + f,). It is easy to see that g + f,, = g+ f, and g — f,, — g — f. Now, by Fatou’s lemma,
linearity of the integral, and the fact that [ g is a constant, we have

/g+/f:/g+fSliminf/(ngfn):/ngliminf/fn (1)

And again by Fatou’s Lemma, we have:

/g_fghminf/g—fn :1iminf/g+liminf (—/fn) z/g—limsup/fn (2)

So from Equation (1), getting rid of the constant | g, we are left with [ f <liminf [ f,. From Equation (2),
we get that — [ f < —limsup [ f,2. Combining these we have liminf [ f, > [ f > limsup [ f,, so we are
done. O

As a note to Equation (1), it would seem like we did a bunch of unnecessary work, and that we could
have immediately used Fatou’s lemma on f,, and f. However, Fatou’s lemma is only valid if the f,’s are
nonnegative, which they are not assumed to be.

Also, notice that we used the fact that [ g < oo to subtract it off.

Remark 3.2. If we let the measure be the counting measure on N we can actually get a useful double
summation property out. See Folland Exercise 2.22

Remark 3.3. It is possible to generalize this theorem. We did not really heavily use the fact that |f,| < g.
What we can do is suppose that we had a sequence of nonnegative g,,’s converging pointwise to g a.e., such
that [ g, — [ g such that |f|, < g,

INote that in class, we took |g| — fn and |g| + fn instead. However since g = |g| since g is nonnegative, I decided not to
2Since none of these integrals are infinity, we can pull the negative trick. (Again, [ f is finite! That’s why we spent time at
the start of the proof proving that f is integrable.)
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