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1 Connected components
Definition 1.1 (Connected components). Let - be a topological space. Define the equivalence relation ∼� on -

by G ∼� ~ if there exists a connected subspace � ⊆ - such that G,~ ∈ �.

An equivalence class under ∼� is called a component.

The set of equivalence classes under ∼� is called the components of - . The definition for path components is similar.
Note that the empty topological space has no components or path components.

Definition 1.2 (Path components). Let - be a topological space. Define the equivalence relation ∼% on - by
G ∼% ~ if there exists a path from G to ~.

An equivalence class under ∼% is called a path component.

Proposition 1.3 (Properties of connected components). Let - be a topological space. Then, the following are true.

1. Components form a partition of -

2. Components are connected

3. Connected1 subspaces of - intersect at most one component.

4. Components are closed.

Proof. (1) follows immediately since ∼� is an equivalence relation.

(2) Suppose [G]∼� = � ∪ � where �, � are disjoint open sets. Suppose that G ∈ �. Let ~ ∈ [G]∼� be arbitrary. Since
G ∼� ~, there is a connected subspace � such that G,~ ∈ �. Since � and � are disjoint, � ⊆ �, so ~ ∈ �. Since ~ is
arbitrary, every point of [G]∼� is contained in �, so � is empty. So there is no separation of [G]∼� .

(3) Let � be a nonempty connected subspace of - and let G ∈ �. Then, � intersects [G]∼� . If ~ ∈ � then by definition
of ∼� we have G ∼� ~, so ~ ∈ [G]∼� . Thus every point in � is contained in [G]∼� .

(4) Given a component � = [G]∼� , then the closure � is also connected, and � intersects at most one component by
(3). Since it intersects �, it is contained in � and thus equal to �. �

We remark that part (3) is actually stronger than stated. If � is a connected subspace of - that intersects a component
� then � is completely contained in �.

Note that (4) does not hold for path components as the closure of a path-connected space is not necessarily connected
(topologist’s sine curve, see last week’s notes).
Proposition 1.4 (Properties of path components). Let - be a topological space. Then, the following are true.

1. Path form a partition of -

2. Path components are path conencted

3. Path connected subspaces of - intersect at most one component.

4. Each path component is contained in a component.

Proof. (1) Follows from definition of ∼% .

(2) Given ~, I ∈ [G]∼%
, there is a path from ~ to I by definition of ∼% so it is path-connected.

(3) This is a similar argument to Proposition 1.3 part (3). If � is a path-connected subspace of - and G ∈ � then �

intersects [G]∼%
. If ~ is any point in � then there is a path from G to ~ since � is path-connnected, so it follows that

~ ∼% G .

(4) It is clear that if G ∼% ~ then G ∼� ~, since if ? is a path from G to ~, then G,~ are elements of the image of the
path, which is connected. (Recall that the domain of a path is a closed interval which is connected.) The result
follows by thinking about the definition of an equivalence class. �

1These have to be nonempty
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A few remarks are in order. Components are maximal connected subsets of - . This means that if � is a component
and � is a connected subspace of - that contains �, then � = �. This is actually equivalent to Definition 1.1. Note
that if - is connected then - only has a single component, namely - . A similar proposition can be formulated for
path components.

2 Local connectedness
Definition 2.1 (Local basis). Let - be a topological space. A local basis around a point G ∈ - is a collection B
of open neighborhoods of G such that given any open neighborhood * of G , there is a � ∈ B such that � ⊆ * .

It is important to note that the neighborhoods in the local basis must be open.
Example 2.2 (Local basis of a point in R). Let G ∈ R be any point and consider the collection of Y balls around G ,

B = { (G − Y, G + Y) : Y ∈ R, Y > 0 } .

Then this forms a local basis of G . //

Definition 2.3 (Local connectedness). A topological space is locally connected if given any point G ∈ - there is
a local basis at G of connected sets.

Note that this is not the same as saying that given a point G it has a connected neighborhood.
Proposition 2.4 (Equivalent definition of local connectedness). A space - is locally (path)-connected if and only if
given any open subset * ⊆ - , every (path) component of * is open in - .

Proof. Let us prove it first for connectedness. First suppose - is locally connected. Let * be an open subset of - .
Let G ∈ * and let � be the2 component of * that contains G . Let 2 ∈ � be a point, we shall prove that there is an
open neighborhood3 of 2 that is completely contained in �. Since - is locally connected, there is a local basis around
G of connected sets, call it B. Then there is a � ∈ B such that G ∈ � ⊆ * by definition. As � is connected, � ⊆ � by
Proposition 1.3 (3). This completes the proof of the forward direction.

Now suppose that given any open set * of - every component of * is open in - . Let G ∈ - . For each open
neighborhood * of G let �* be the component of * that contains G . Keep in mind that �* is open in - and
G ∈ �* ⊆ * . Then let B be the set of all such �* ’s, one for every open neighborhood * of - . To see this, note that
given an open neighborhood + of G , �+ is open in - and G ∈ �+ ⊆ + . But this is exactly the definition of local
connectedness. �

The proof for path components is similar.

A nice property of a space - being locally path connected is that there is no difference between looking at the
components of - and the path components of - . They are the same set.
Corollary 2.5 (Components equal path components if locally connected). If - is locally path connected, then every
component is a path component and conversely. Therefore, the set of components and the set of path components of -
are equal.

Proof. Let � be a component and let G ∈ �. Then � = [G]∼%
∪&, where & =

⋃
~∈�,~≠G [~]∼%

. So & is the union of all
the other path components of �. By Proposition 2.4, as each [~]∼%

is open, & is open. If & is not empty, then [G]∼%

and & separate �, which contradicts & being connected. �

We remark that a space being connected does not mean it is locally connected. See [Mak23].

3 Filters and Ultrafilters

2A point can be contained in precisely one component since equivalence classes are equal or disjoint
3This neighborhood is open in -
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G

[~]∼%

Figure 1: Proof of Corollary 2.5

Definition 3.1 (Filters and Ultrafilters). A collection F ⊆ P(N) is a filter (on N)a if

1. N ⊆ F , and ∅ ∉ F . A filter does not contain the empty set.

2. If �, � ∈ F then � ∩ � ∈ F (closed under finite intersections).

3. If � ∈ F and � ⊇ � then � ∈ F (closed upwards).

An ultrafilter is a filter which if � ⊆ N, then either � ∈ F or N \� in F .
aNote that filters can be defined on any nonempty collection of sets whatsoever. See [Jec03, Def 7.1, p. 73].

So an ultrafilter is a maximal filter, that is, there is no filter which properly contains it4. Note that a filter cannot
contain both � and N \�, for if it does, then it contains their intersection, which is the empty set, violating condition
(1).
Example 3.2 (Trivial filter). The set {N } forms a filter. //
Example 3.3. Let � ⊆ N. Define F� = { � ⊆ N : � ⊆ � }. //
Example 3.4 (Frechet filter). Define

Fr = {� ⊆ N : N \� is finite } .

This is called the Frechet filter. It contains all subsets of the naturals with finite complement. Note that this is not an
ultrafilter, since the set of even numbers is not cofinite, and their complement is also not cofinite. We can use the
Frechet filter to reword convergence of a sequence in the language of filters instead (Proposition 3.12). //
Example 3.5 (The power set is not a filter). The power set cannot be a filter, as it contains the empty set. //
Example 3.6 (Principal ultrafilters.). Let = ∈ N be fixed. Let

U= = {� ⊆ N : = ∈ � } .

This is called a principal ultrafilter. So U= is the set of all subsets of the naturals that contain =. This is a filter,
and it is an ultrafilter, since if ( does not contain = then its complement contains =. //

An ultrafilter that is not principal is called free. We will see later on that an ultrafilter is either principal or free.
Remark 3.7. It is not possible to prove the existence of an ultrafilter which is not principal without the axiom of
choice. With the axiom of choice, we can construct an ultrafilter that contains a filter.

Theorem 3.8 (Ultrafilter Theorem (Tarski, 1930)). Every filter is contained in an ultrafilter.

Proof. Let F be a filter. Consider the set

PF = {� ⊆ P(N) : � is a filter and F ⊆ � } .

Order PF by subset inclusion. We shall use Zorn’s lemma to extract a maximal element (and we shall prove that is an
ultrafilter). First of all PF is nonempty, as F ∈ PF. Now, let C ⊆ PF be a chain. We shall prove that C is bounded.
Let H =

⋃
�∈C � , the union of all the filters in C.

We claim that H is a filter, and thus it is a bound for C, since every filter in C will be contained in H . Clearly,
N ∈ H as N ∈ F ⊆ H . If ∅ ∈ H then ∅ ∈ � where � ∈ C, but this is not possible as � is a filter.

4Good exercise
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Now, let �, � ∈ H . Then, there are filters ��,�� ∈ C such that � ∈ �� and � ∈ �� . Since C is a chain, either �� ⊆ ��

or �� ⊆ ��. Without loss of generality say �� ⊆ �� . Then, both �, � are in �� , so � ∩ � ∈ �� ⊆ H .

Let � ∈ H and suppose � ⊇ �. By definition of H there is a filter �� ∈ C such that � ∈ ��, then � ∈ �� so � ∈ H .

This shows that an arbitrary chain C is bounded. Thus, by Zorn’s lemma, there is a maximal (for ⊆) * ∈ PF. We
shall show that * is an ultrafilter. Suppose not. Then, there is � ⊆ N such that � ∉ * and N \� ∉ * . We claim that
there is a filter containing * ∪ {� }. First, observe that this set has the finite intersection property: given - ∈ * ,
- ∩� cannot be empty, for else - ⊆ N \� which would imply that N \� ∈ * . Now for the existence of the filter, let
G be the filter gnerated by * ∪ {� }. Then G is a filter (Lemma 3.9) that contains * properly, which contradicts the
maximality of * . �

A collection of subsets of N, A ⊆ P(N) is said to have the finite intersection property if given any finite collection of
elements of A, {�8 }=1 ⊆ A, the intersection

⋂=
8=1�8 is nonempty. If the intersection is infinite, A is said to have the

strong finite intersection property. Every filter has the finite intersection property.
Lemma 3.9 (Existence of filter containing a FIP collection). If A has the finite intersection property, then the set

FA =

{
� ⊆ N : ∃�1, . . . , �= ∈ A,

=⋂
1

�8 ⊆ �

}
is a filter. This filter is called the filter generated by A.

Proof. This simply requires you to check the definitions, and thus can be safely skipped. It is immediate that N ∈ FA .
If ∅ ∈ FA then there is a collection �1, . . . , �= of elements of A such that

⋂=
1 �8 ⊆ ∅ which implies they have empty

intersection, which is impossible, so ∅ ∉ FA . Suppose �,� ∈ FA , then we have collections {�8 }=1 , { �8 }<1 ⊆ A, such
that

⋂=
1 �8 ⊆ � and

⋂<
1 �8 ⊆ � . Then, we have

(⋂=
1 �8

)
∩
(⋂<

1 �8
)
⊆ � ∩� . Now suppose � ∈ FA and � ⊇ �. Since

� ∈ FA by definition we have {�8 }=1 ⊆ A such that
⋂=

1 �8 ⊆ � ⊆ � so it follows that � ∈ FA . �

Note that if A has the strong finite intersection property instead (given any finite subcollection of A, the intersection
of this subcollection is infinite), the collection A ∪ Fr has the finite intersection property, and thus any ultrafilter that
extends this will be free. Conversely, if U is a free ultrafilter that extends A then A has the strong finite intersection
property.

With existence of ultrafilters out of the way, we can now construct a universal5 compact Hausdorff space from - ,
given a topological space - .
Example 3.10 (Stone-Čech compactification of N). Define

VN = {* ⊆ P(N) : * is an ultrafilter } .

Give VN the topology which is generated by sets [�]6. To be more precise, we shall define [�] like so. Fix � ⊆ N, let
[�] = {* ∈ VN : � ∈ * }. Notice [�] ⊆ VN, so [�] is the set of all ultrafilters on the naturals that contain � as an
element. Then, define

B = { [�] : � ∈ P(N) } .

We claim that B is a basis for a topology on VN. To see this, observe that [N] = VN and [∅] = ∅. Now let [�], [�] ∈ B.
Let * ∈ [�] ∩ [�]. So * is an ultrafilter that contains both � and �. Thus, * contains �∩�, so * ∈ [�∩�] = [�] ∩ [�].
To see why [� ∩ �] = [�] ∩ [�], notice that if � is an ultrafilter such that � ∩ � ∈ � , then � ⊇ � ∩ � so � ∈ � , and
likewise � ∈ � . If � ∈ [�] ∩ [�], then �, � ∈ � so � ∩ � ∈ � as � is a filter.

Notice that VN is zero-dimensional, meaning it has a basis which consists of clopen sets. Given [�] ∈ B (which is
open), VN \ [�] = [N \�], which is open, so [�] is closed too. //

Note that this technique really only works on discrete spaces.

3.1 Convergence under filters

5Ask me directly if you want to find out what universal means.
6This has nothing to do with equivalence classes.
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Definition 3.11 (Convergence under a filter). Let - be a topological space and let F be a filter on N. A sequence
x = (G=)=∈N F -converges to G if given any open neighborhood * of G , the set of indices where G= ∈ * is an
element of F , i.e. {= ∈ N : G= ∈ * } ∈ F .

We denote this by G= →F G or alternatively, G = lim=→F G=.

The set of limit points of a sequence G= under a filter F will be denoted by LimF (x) = { G ∈ - : G= →F G }.

We revisit the example of the Frechet filter (Example 3.4).
Proposition 3.12 (Usual convergence in terms of filters). Let G= be a sequence in a topological space. A sequence G=
converges to G (in the usual topological sense) if and only if G= →Fr G where Fr is the Frechet filter.

Proof. If G= converges to G , take an open neighborhood * of G , then there is # ∈ N such that if = ≥ #, G= ∈ * . This
means that the set � = {= ∈ N : = ≥ # } has finite complement, so � is in the Frechet filter. Conversely, if G= converges
to G under the Frechet filter, pick an open neighborhood * of G . Then, let ( be in the Frechet filter such that if = ∈ (,
G= ∈ * . Since ( is in the Frechet filter, ( has finite complement, so let # = max(N \ (). When = ≥ # , it necessarily
implies that = ∈ ( and so G= ∈ * . �

The Frechet filter has the nice property that any non principal ultrafilter will contain it. Thus anything that converges
in the usual sense must also converge under any non principal ultrafilter on N. Recall that a principal ultrafilter
contains singletons.
Lemma 3.13 (Any non-principal ultrafilter has no finite sets). Let U be a non principal ultrafilter on N. Then, U
has no finite sets.

Proof. Let U be a non principal ultrafilter on N that contains a finite set � . Since U is non principal, it contains no
singletons. Enumerate � = { 01, . . . , 0= }. For each 08 ∈ � , we notice that the set (8 = N \ { 08 } is in F , for else { 08 } ∈ U,
and U has no singletons. Notice that

⋂=
8=1 (8 = N \ � , and this is in U since each (8 ∈ U, and the intersection is finite.

This is a contradiction. �

Corollary 3.14. A filter cannot be both principal and non-principal.
Corollary 3.15 (Any non principal ultrafilter contains the Frechet filter). If U is a non-principal ultrafilter on N,
then Fr ⊆ U.

Proof. The Frechet filter contains all ( ⊆ N such that N \ ( is finite. All such ( is contained in U (since if a cofinite
set is missing then its complement, which is finite, would be in U). �

Corollary 3.16. If G= converges to G in the usual sense then it converges to G under any non-principal ultrafilter.

Proof. Proposition 3.12 and Corollary 3.15. �

4 Compactness
Compactness is apparently the most important topic in topology.

Definition 4.1 (Open cover). Let - be a topological space. Then a collection U = {*U }U∈Λ is an open cover of
- if

⋃
U∈Λ*U = - .

A subset of U that still covers - is called a subcover.

Example 4.2 (Open cover of a finite space). Let - = { 1, . . . , = } be a finite topological space endowed with the
discrete topology. Then it is easy to see that the set of singletons { 8 } for each 8 ∈ - is an open cover of - . We remark
that such an open cover has a finite subcover (namely, itself). //
Example 4.3 (Open cover of R). We can easily see that the set of open intervals of the form (=, = + 2) for each = ∈ Z
covers R. //

Definition 4.4 (Compactness). Let - be a topological space. Then - is said to be compact if every open cover
of - contains a finite subcover.

4 COMPACTNESS 6
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We emphasize the importance that you must be able to extract a finite subcover out of every open cover. It is not
enough to be able to extract a finite subcover out of a certain open cover, as every topological space - can be trivially
open covered by {- }.
Example 4.5 (Compactness of a finite topological space). Let - be a finite topological space. Since any collection of
subsets of a finite set must be finite, any open cover of - must necessarily be finite and thus - is compact. //
Example 4.6 (Non-compactness of R). We notice that R is not compact, since Example 4.3 is an open cover of R
that has no finite subcover. //

The next example illustrates that any sequence together with a limit point of the sequence is compact.
Example 4.7 (Compactness of a convergent sequence). Let (G=) be a sequence in a space - that converges to G .
We claim that { G= : = ∈ N } ∪ { G } is compact. To see this, let U be an open cover of this set. Then, there is some
*U ∈ U such that *U contains G . Since G= → G , there exists some # such that all G= where = ≥ # is contained in *U ,
so there are only finitely many G=’s that are not in *U . We thus choose an open set *8 ∈ U for each G8 that is not in
*U . We have thus found a finite subcover for this convergent sequence. //

Just like connectedness, compactness is an intrinsic property (unlike being open). That is to say, if � ⊆ - is compact
in the subspace topology, then it is not going to become non-compact when considered as subset of - . This is unlike
the notion of being open, since * ⊆ � can be open in �, but not in - .
Proposition 4.8 (Compactness is not relative.). Let � be a subspace of - . Then, � is compact (in the subspace
topology) if and only if every open cover of � by open sets of - has a finite subcover of �.

See [Lee11, Lemma 4.27, p. 94].

Proof. Suppose � is compact in the subspace topology. Let U = {+U : U ∈ Λ } be a collection of open subsets of -
that cover �. We now translate this to an open cover of � by open subsets of �. Define � ∩U = {� ∩+U : U ∈ Λ }.
By compactness of �, we have � ∩+1, . . . , � ∩+= that covers �, so +1, . . . ,+= is a finite subcover of � by subsets of U.

The converse is trivial. �

Henceforth, when we speak of an open cover of a subspace, it does not matter whether it is an open cover of a
subspace by open subsets of the subspace, or by open covers of the big space.

We now introduce an alternative characterization of compactness.

Definition 4.9 (Finite intersection property (FIP)). Let C = {�U : U ∈ Λ } be a collection of closed subsets of a
topological space - . Then, - has the finite intersection property if given any finite subset � ⊆ Λ,

⋂
U∈� �U is

nonempty.

Note that this definition is pretty much the same as the one given before Lemma 3.9.
Proposition 4.10 (FIP iff compact). Let - be a space. Then - is compact if and only if every collection C of closed
subsets of - with the finite intersection property has a nonempty intersection, that is

⋂C ≠ ∅.

We shall sketch a proof of this. The idea is to take the contrapositive of the theorem and translate compactness into
closed sets. Notice that if U is an open cover of - , then the set - − U = {- \* : * ∈ U } has the property that⋂
- −U = ∅. If additionally U has a finite subcover, then there is a finite number of sets in - −U whose intersection

is empty. A space - is compact if and only if given any collection C of closed subsets of - such that
⋂C is empty,

any finite intersection of elements in C is empty.

Proof. See [Mun00, Thm 26.9, p. 167]. �

5 Properties of compactness
In this section we see how compactness interacts with other topological properties and constructions.

The most important thing about compactness is that it is preserved under continuous functions.

Theorem 5.1 (Main theorem of compactness). Let - be a compact space and 5 : - → . be a continuous function.
Then, 5 [- ] is compact.

5 PROPERTIES OF COMPACTNESS 7
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Proof. Let U = {*U : U ∈ Λ } be an open cover of 5 [- ] by open subsets of . . Then, the set 5 −1 [U] = { 5 −1 [*U ] : U ∈ Λ }
is an open cover of - , so there is a finite subcover, say 5 −1 [*1], . . . , 5 −1 [*=]. It is now clear that *1, . . . ,*= is a finite
subcover of 5 [- ]. �

Corollary 5.2 (Compactness is a topological invariance). Any space homeomorphic to a compact space is compact.

Now we shall see how compactness interacts with other topological properties.
Proposition 5.3 (Closed subsets of compact spaces are compact). If - is a compact space and . ⊆ - is closed, then
. is compact.

Proof. Let U = {*U : U ∈ Λ } be an open cover of . by open sets of - . Then, the set U ∪ {- \ . } is an open cover of
- , so there is a finite subcover. Now, remove - \ . from the finite subcover of - (if it is in there) to obtain a finite
subcover of . . �

Given a Hausdorff space, we can separate a point from a compact subspace. This can be seen in [Mun00, Lem 26.4,
p. 166]. A generalization of this fact can be proven ([Lee11, Lem 4.34, p. 95]) below, and it is [Mun00, Chp. 26, Ex. 5].

Proposition 5.4 (Separating compact subspaces from compact subspaces). Let - be a Hausdorff space. Let . be
compact and / be disjoint compact subspaces. Then, there exists disjoint open sets * and + such that / ⊆ * , and
. ⊆ + .

Proof. First suppose that / = { G }. For each point ~ ∈ . , there exists disjoint open neighborhoods *G of G and +~ of
~. The collection {+~ : ~ ∈ . } is an open cover of . , so there is a finite subcover +~1 , . . . ,+~= . Now set UG =

⋂=
8=1*~8

and VG =
⋃=

8=1+~8 . Then, . ⊆ VG , and G ∈ UG . It is also clear that UG and VG are disjoint.

Now suppose / is a compact subspace. For each G ∈ / , we have disjoint open sets UG ,VG where UG contains G , and
VG contains . . The collection {UG : G ∈ / } is a open cover of / , so there is a finite subcover, say UG1 , . . . ,UG= . Then,
set U =

⋃=
8=1 UG8 and V =

⋂=
8=1 VG8 . So U contains / and V contains . . �

Remark 5.5. In the lecture, it was only proved that a point can be separated from a compact subspace. The
proposition above has been upgraded to separating an entire compact subset, which illustrates the fact that compactness
behaves like finiteness. A property possessed by a finite set (being able to be separated from a compact subset) is
also possessed by a compact subset.

If the space is Hausdorff, a compact subspace of this space has the additional property of being closed. This will be
useful when proving the Heine-Borel theorem.
Corollary 5.6 (Compactness in Hausdorff spaces). Let - be a Hausdorff space and . be a compact subspace of - .
Then, . is closed in - .

Proof. We simply show that - \ . is open. Given a point G ∈ - , G ∉ . , apply Proposition 5.4 to find an open
neighborhood of G that is disjoint from . . �

Given a metric space, we can say more about a compact subspace of it, namely that they are bounded. If - is a
metric space with metric 3, then a set ( ⊆ - is said to be bounded if there exists " > 0 and a point G ∈ - such that
( ⊆ �3 (G,").
Proposition 5.7 (Compact subsets of metric spaces are bounded). Let - be a metric space and . a compact subspace
of - . Then, . is bounded.

Proof. Let G ∈ - . Then consider the open cover of . by { �(G, =) : = ∈ N }. Clearly this must open cover . , so there is
a finite subcover. The largest ball contains . . �

You might be wondering about the product of compact spaces. Is that compact? Yes. We can prove it for finite
products. However, the fact that the arbitrary product of compact spaces is compact is nontrivial. This is known as
Tychonoff’s Theorem.
Proposition 5.8 (Finite product of compact spaces is compact). Suppose -,. are compact spaces. Then - × . is
compact.

5 PROPERTIES OF COMPACTNESS 8
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Proof. For this, we will need a small lemma, the tube lemma (Lemma 5.9) and we can re-use the ideas from the
product of connected spaces being connected. Let U be an open cover of - × . . For each point G ∈ - , the set
{ G } × . is compact (c.f. Corollary 5.2) and so there exists a finite subcover *1, . . . ,*= ∈ U. By Lemma 5.9, there is a
neighborhood +G of G , which forms a tube +G × . such that +G × . ⊆ ⋃=

8=1*8 . Since - is compact, finitely many such
+G ’s cover - , so finitely many tubes cover . . Since each of the tubes is contained in finitely many * ’s from U, we are
done. �

Lemma 5.9 (Tube lemma). Let - be a topological space and . be a compact space. Given G ∈ - , and a open set
* ⊆ - × . that contains { G } × . , there is an open neighborhood + of G such that + × . ⊆ * .

For a picture, see [Lee11, Fig 4.5, p. 96] or [Mun00, Lemma 26.8, pp. 168–169].

Proof. For each ~ ∈ . , there is an open set & ×, ⊆ * such that G ∈ & and ~ ∈, . There are finitely many such , ’s
that cover . as . is compact, so set + to be the union of the &’s. Then & is open and & × . ⊆ * . �

A closed interval should be compact. The next proposition proves this. For a proof that has more pictures, see [Lee11,
Thm 4.39, p. 97] or [Mun00, Thm 27.1, pp. 172–173], where a generalization is proved.
Proposition 5.10 (Closed intervals are compact). Let [0,1] be a closed interval in R (where 0 ≤ 1). Then, [0,1] is
compact.

Proof. Let U = {*U : U ∈ Λ } be an open cover of [0,1]. Let

( = { G ∈ [0,1] : [0, G] has a finite subcover by U } .

Then ( is nonempty as [0, 0] clearly has a finite subcover. Additionally, ( is bounded above by 1. So ( has a supremum.
Let 2 = sup (. We claim that 2 = 1. Suppose not, then 2 < 1. Since each *U is open, there exists Y > 0 such that the
interval (2 − Y, 2 + Y) is contained in some *U0 . Notice that [0, 2] can be finitely subcovered by U. If we choose ~ such
that 2 < ~ < 2 + Y, then *U0 contains [2,~]. So [0,~] can be finitely subcovered, contradicting the fact that 2 is the
sup. �

We can now deduce the Heine Borel theorem for R.
Corollary 5.11 (Heine-Borel for R). Any closed bounded subset of R is compact.

Proof. If ( is a bounded subset of R then it is contained in some open interval, which is contained in some closed
interval. Since the closed interval is compact and closed and ( is a closed subset of this closed interval, it is compact. �

We have already shown that compact subsets of metric spaces are closed and bounded. In R=, we can reverse the
implication. This is known as the Heine-Borel theorem.

Theorem 5.12 (Heine-Borel). Let . be a closed and bounded subset of R=. Then, . is compact.

Proof. If ( is a closed and bounded subset of R= then it is contained in some cube [−� , � ]=. By Proposition 5.8, and
Corollary 5.11 this cube is compact. By Proposition 5.3 ( is compact. �

We now summarize the results about compactness.

Theorem 5.13 (Properties of compactness). 1. A closed subset of a compact space is compact.

2. A compact subspace of a Hausdorff space is closed.

3. A compact subspace of a metric space is bounded.

4. A finite product of compact spaces is compact.

Proof. 1. Proposition 5.3

2. Corollary 5.6

5 PROPERTIES OF COMPACTNESS 9
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3. Proposition 5.7

4. Proposition 5.8

�

6 Tychonoff Theorem
Theorem 6.1 (Arbitrary product of compact spaces is compact). Let {-U : U ∈ Λ } be a collection of compact
spaces. Then, - =

∏
U∈Λ-U is compact with the product topology.

Proof. Let U be a cover for - by subbasic elements, so that given any element in U, it is of the form c−1
U [* ] for some

* ⊆ -U , open. We claim that there is some V ∈ Λ such that UV = { c−1
V

[* ] : * ⊆ -V ,* open } covers - . If this is
untrue, for every U , there is some GU ∈ -U such that GU is not covered by open subsets * ⊆ -U such that c−1

U [* ] ∈ U.
Let x = 〈GU : U ∈ Λ〉, then x is not covered by U which is impossible. Consider {* ⊆ -V : c−1

V
[* ] ∈ U }, this covers

-V . Finitely many of such * ’s will cover -V , so preimage these and this is a finite cover of - contained in U. �

Lemma 6.2 (Alexander Subbasis Lemma). Let - be a topological space with subbasis S. If every open cover of - by
elements of S has a finite subcover, then - is compact.

Proof. Suppose for contradiction that - is not compact. Let S be a subbasis of - and let O be an open cover of -
with no finite subcover. Suppose that O is a maximal such open cover with no finite subcover (under ⊆ - use Zorn’s
lemma). Notice that O ∩ S cannot have a finite subcover of - . So pick G ∈ - such that G ∉

⋃O ∩ S. Since O covers
- , let * ∈ O be such that G ∈ * . Now, we have (1, . . . , (= such that G ∈ ⋂=

1 (8 ⊆ * . We notice that (8 ∉ O for all 8,
since if not then we would have G ∈ ⋃O ∪S. For each (8 , there is a finite collection U8 ⊆ O such that U8 ∪ {(8 } covers
- (due to maximality of O, O ∪ {(8 } would have to have a finite subcover). Let G =

⋃=
1 U8 . For each 8, G ∪ {(8 }

finitely covers - . Now observe that - \ (⋃G) ⊆ (8 for each 8, so this implies that - \⋃G ⊆ ⋂=
1 (8 . But then * would

contain
⋃G and {* } ∪ G is a finite cover of - coming from O. �

At this point, we have made use of the axiom of choice to prove Tychonoff’s Theorem (in the form of Zorn’s lemma).
It turns out that Tychonoff’s theorem is equivalent to the axiom of choice. Assuming Tychonoff’s theorem is true, the
axiom of choice is also true.

Theorem 6.3 (Tychonoff implies choice). Tychonoff theorem implies the axiom of choice.

Proof. Let -U , U ∈ Λ be a collection of nonempty sets. Let ~ be such that ~ ∉
⋃

U∈-U

7. Give -U ∪ {~} the cofinite
topology with the additional property that {~} is open (so that ~ is an isolated point in -U). This makes -U ∪ {~}
compact. Then by Tychonoff, - ′ =

∏
U∈Λ-U ∪ {~} is compact. Now, the collection C = { c−1

U [-U ] : U ∈ Λ }8 is a
collection of closed sets, and has the finite intersection property. To see why it has the FIP, let U1, . . . , U= ∈ Λ. We
need to pick some element in

⋂=
1 c

−1
U8

[
-U8

]
. Each -U8 is nonempty, so let GU8 ∈ -U8 . Consider the tuple x with ~ in

all coordinates U where U ≠ U8 , and GU8 when U = U8 . Then x lives in the intersection. Since - ′ is compact,
⋂C is

nonempty and contains the choice function desired. �
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