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1 Connectedness
Definition 1.1 (Separation). Let X be a topological space. Then a separation of X is a partition of X = A∪B,
where A,B are disjoint, open and nonempty sets.

Note that this definition may be called a disconnection of X by some authors (c.f. [Lee11]). A space X is connected
if and only if there exists no separation of X.

A set is said to be clopen if it is both open and closed.
Proposition 1.2 (Connected iff clopen sets are trivial). Let X be a topological space. Then X is connected if and
only if it has no nontrivial clopen subsets, i.e. the only clopen subsets of X are ∅ and X.

Proof. Obviously.

Definition 1.3 (Path). Let X be a topological space and x, y ∈ X. Then, a path from x to y is a continuous
function p : [0, 1] → X such that p(0) = x and p(1) = y.

Note that the domain can be replaced with any closed interval [a, b] since all closed intervals are homeomorphic to
[0, 1].

A space X is said to be path-connected if given any x, y ∈ X, there exists a path from x to y.

Theorem 1.4 (Path connectedness implies connectedness). Let X be a path-connected space. Then X is connected.

Proof. If not, let A,B be a separation of X. Let a ∈ A, b ∈ B and p is a path from a to b. Then p[[0, 1]] ∩ A and
p[[0, 1]] ∩B is a separation of p[[0, 1]] which contradicts the connectedness of p[[0, 1]].

Note that we have made used of the fact that intervals are connected, and the image of a connected space under a
continuous function is connected.

Definition 1.5 (Totally disconnected space). A space X is totally disconnected if the only connected subspaces
of X are singletons.

Clearly the discrete topology on a space with more than one point is totally disconnected. However, not every totally
disconnected space has the discrete topology.
Example 1.6 (The rationals are totally disconnected). Let X = Q considered as a subspace of R. Then X is totally
disconnected since given p, q where p 6= q, we can partition X = (X ∩ (−∞, p)) ∪ ((p,∞) ∩X). //

Recall that if X ⊆ R, a subset A ⊆ X is said to be convex if given a, b ∈ A, we have that [a, b] ⊆ X. We shall now
prove that intervals in R are connected. Before we begin the proof, note the properties of the real numbers that we
make use of: the fact that supremums exist, and between any two reals, we can find another real.

Theorem 1.7 (Connected subspaces of R). Let X ⊆ R. Then X is connected if and only if it is convex.

Proof. If X is not convex, then let a, b ∈ X and z ∈ R be such that a < z < b, and z 6∈ X. Then X can be separated
by X = (X ∩ (−∞, z)) ∪ ((z,∞) ∩X).

Suppose X is convex but that X = A ∪ B is a separation. Let a ∈ A, b ∈ B and suppose without loss of
generality that a < b. Since X is convex, [a, b] ⊆ X. We thus separate [a, b] = (A ∩ [a, b]) ∪ (B ∩ [a, b]). Let
A0 = (A ∩ [a, b]), B0 = (B ∩ [a, b]). Let c = supA0. Then c ∈ X and c ∈ A0 as A0 is closed. Since A0 is open there is
some ε such that c+ ε ∈ A0. But c+ ε > c which contradicts c being supA0. Oopsies!

Example 1.8 (Topologist’s sine curve). The topologist’s sine curve is an example of a space which is connected, but
not path connected. Let f : (0, 1] → R be defined by f(x) = sin(1/x). Let S ⊆ R2 be the graph of f . The topologist’s
sine curve is thus defined to be S. It is connected, because it is the closure of the image of a connected space under
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a continuous function. (The function is x 7→ (x, f(x))). However, we run into an issue when trying to construct a
path from x ∈ S to the set of limit points of S. For concreteness, let us suppose we are trying to connect x to (0, 0).
Suppose we somehow have a path p : [0, 1] → S from x to (0, 0). Let L = { 0 } × [−1, 1] (which is the set of limit
points of S). L is closed in S, so p−1(L) is closed too.

See [Mun00, Example 7, pp. 156–157] for full argument. (For an explicit value of u that can be chosen, you can pick
u = 1

2nπ+π/2 so sin(1/u) = 1, and u = 1
2nπ+(3/2)π if you need sin(1/u) = −1.) //
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Figure 1: Topologist’s sine curve

Proposition 1.9 (Separations and connected subspaces). Let X be a topological space and let Y be a (path) connected
subspace of X. If A ∪B is a separation of X, then either Y ⊆ A or Y ⊆ B.

Proof. If Y is not fully contained within either A or B then we can separate Y with (Y ∩A) ∪ (Y ∩B).

Proposition 1.10 (Union of (path)-connected subspaces with a common point is (path)-connected). Let X be a
topological space and let Aα be a collection of (path) connected spaces and suppose z ∈ Aα for all α, so the Aα’s have
a common point. Then,

⋃
Aα is (path) connected.

Proof. We first prove it for path connectedness. Let z be a point in common. If x, y ∈
⋃

Aα, say x ∈ Aα and y ∈ Aβ .
Then, glue a path from x to z and a path from z to y together. This one is easy to visualize by drawing a picture.

Let us now prove it for connectedness. Suppose that
⋃
Aα is the union of disjoint open sets A ∪ B. Then z ∈ A

or z ∈ B. Suppose without loss of generality that z ∈ A. Then for all α, Aα must intersect A. By the previous
proposition, all Aα ⊆ A. So this means B is empty. Thus there is no separation of

⋃
Aα.

Proposition 1.11 (Closure of a space is connected). Suppose A is a connected subspace of X and B is a set such
that A ⊆ B ⊆ A. Then, B is connected.

Proof. Use Proposition 1.9. (For full proof, see [Mun00] or [Lee11, Prop 4.9, p. 88].)

It is important to note that this proposition is untrue if A is path connected. See Example 1.8 for this happening.

Theorem 1.12 (Main theorem on connectedness). Let X be a connected space and let f : X → Y be a continuous
function. Then f [X] is connected.

Proof. If not, let A,B be a separation of f [X]. Then f−1(A), f−1(B) separate X.

Note here that A,B are considered as open/closed sets in the subspace topology on f [X]. The above theorem is also
true with path-connectedness in place of connectedness. The proof is obvious, as you can simply compose the path
with f .
Corollary 1.13 (Connectedness is invariant under homeomorphism). Any space homeomorphic to a connected space
is connected.
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Proof. Duh.

Corollary 1.14 (Intermediate value theorem). Let f : X → R and suppose X is connected. If p, q ∈ X then f attains
every value between f(p) and f(q).

Proof. Suppose without loss of generality that f(p) < f(q). Then f [X] is connected so it must contain [f(p), f(q)].

See [Lee11, Thm 4.12, p. 89] for further details.
Warning. The preimage of a connected or path-connected space need not be connected. Take X = R with the
discrete topology and Y = R with the trivial topology. Then the identity is continuous from X to Y but the preimage
of Y is disconnected.
Proposition 1.15 (Finite product of connected is connected). If X,Y are connected spaces then X × Y is connected.

X

Y

〈a, b〉
b X × { b }

x

Figure 2: Proof that the finite product of connected spaces is connected

Proof. Fix a point 〈a, b〉 ∈ X × Y . Define Tx = {x } × Y ∪X × { b }. This set is connected as it is the union of 2
connected sets with the point 〈a, b〉 in common. Then X × Y =

⋃
x∈X Tx. This is a union of connected spaces with

the point 〈a, b〉 in common. (See Section 1 for a better visualization. See [Mun00, Thm 23.6, p. 148] for complete
proof.)

The product topology preserves connectedness (which is nice).
Proposition 1.16 (Product of (path) connected spaces is connected). If Xα is a collection of (path)-connected
spaces, then X =

∏
Xα is (path)-connected.

Proof. (Path-connectedness) Let x,y ∈
∏

Xα, writing x = 〈xα : α ∈ Λ〉 and y = 〈yα : α ∈ Λ〉. Since each Xα is path
connected, for each α, let fα : I → Xα be a path from xα to yα. We simply glue these paths together by taking
f(t) = 〈fα(t) : α ∈ Λ〉 which is a path from x to y.

(Connectedness) Fix a point a = 〈aα : α ∈ Λ〉. If F ⊆ Λ is finite, then define

XF = {x ∈ X : xα = aα if α ∈ Λ \ F } .

So XF is the set of all x ∈ X such that xα = aα for all coordinates except those in F . We thus see that XF is
homeomorphic to

∏
α∈F Xα. Since finite products of connected spaces are connected, XF is connected.

Now, set Z =
⋃

F⊆Λ,|F |<ω XF . This is the union of XF ’s across all finite subsets F ⊆ Λ. Then Z is connected, as
each XF has the point a in common (Proposition 1.10). Additionally, we claim that Z = X. This will finish it off
(Proposition 1.11), so let us see why this is true. Pick x ∈ X and let U be a neighborhood of x in the product
topology. We need to show that U intersects Z. Since we are in the product topology, this means that U =

∏
α∈Λ Uα

and Uα = Xα except for finite α. Say those α’s are all in the set F . Define

zα =

{
xα if α ∈ F,

aα otherwise.

Then z ∈ XF ∩ U so the point z is in the closure of Z.
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The box topology is usually not going to be connected.
Example 1.17 (Countable product of R with the box topology). Let X =

∏
n∈N R and give it the box topology. Let

`∞ = {x ∈ RN : sup
n∈N

|xn| < ∞} .

This is the set of bounded real-valued sequences. We shall show that `∞ is clopen. Since `∞ is not all of RN

(by obviousness) we will be done. Let x ∈ `∞ be a bounded sequence. Consider the neighborhood of x given by
U =

∏
n∈N B(xn, 1). Notice if y ∈ U , then |yn| < |xn|+ 1 ≤ supn∈N |xn|+ 1 so y must be a bounded sequence too.

For being closed, notice that the complement is open. (Use the same argument). //
Remark 1.18 (Path-connectedness of finite products). For the finite case the proof is very easy. Given a point
〈x0, y0〉 ∈ X × Y and a point 〈x1, y1〉 ∈ X × Y , since X,Y are respectively path connected let p be a path in X from
x0 to x1 and q be a path in Y from y0 to y1. Then the map p× q is the desired path. Apply induction and the fact
that (X × Y )× Z is homeomorphic to X × Y × Z.
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