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1 Connectedness

Definition 1.1 (Separation). Let X be a topological space. Then a separation of X is a partition of X = AU B,
where A, B are disjoint, open and nonempty sets.

Note that this definition may be called a disconnection of X by some authors (c.f. [Leell]). A space X is connected
if and only if there exists no separation of X.

A set is said to be clopen if it is both open and closed.
Proposition 1.2 (Connected iff clopen sets are trivial). Let X be a topological space. Then X is connected if and
only if it has no nontrivial clopen subsets, i.e. the only clopen subsets of X are @ and X.

Proof. Obviously. O

Definition 1.3 (Path). Let X be a topological space and z,y € X. Then, a path from z to y is a continuous
function p : [0,1] — X such that p(0) = = and p(1) = y.

Note that the domain can be replaced with any closed interval [a, b] since all closed intervals are homeomorphic to
[0, 1].

A space X is said to be path-connected if given any x,y € X, there exists a path from z to y.

Theorem 1.4 (Path connectedness implies connectedness). Let X be a path-connected space. Then X is connected.

Proof. If not, let A, B be a separation of X. Let a € A,;b € B and p is a path from a to b. Then p[[0,1]] N A and
p[[0, 1]] N B is a separation of pl[[0, 1]] which contradicts the connectedness of pl[[0, 1]]. O

Note that we have made used of the fact that intervals are connected, and the image of a connected space under a
continuous function is connected.

Definition 1.5 (Totally disconnected space). A space X is totally disconnected if the only connected subspaces
of X are singletons.

Clearly the discrete topology on a space with more than one point is totally disconnected. However, not every totally
disconnected space has the discrete topology.

Example 1.6 (The rationals are totally disconnected). Let X = Q considered as a subspace of R. Then X is totally
disconnected since given p, g where p # ¢, we can partition X = (X N (—o0,p)) U ((p,00) N X). /

Recall that if X C R, a subset A C X is said to be convex if given a,b € A, we have that [a,b] C X. We shall now
prove that intervals in R are connected. Before we begin the proof, note the properties of the real numbers that we
make use of: the fact that supremums exist, and between any two reals, we can find another real.

Theorem 1.7 (Connected subspaces of R). Let X C R. Then X is connected if and only if it is convex.

Proof. If X is not convex, then let a,b € X and z € R be such that a < z < b, and z ¢ X. Then X can be separated
by X = (X N(—00,2))U((z,00) N X).

Suppose X is convex but that X = AU B is a separation. Let a € A,b € B and suppose without loss of
generality that a < b. Since X is convex, [a,b] C X. We thus separate [a,b] = (ANJa,b]) U (BNla,b]). Let
Ao = (ANa,b]),Bo = (BNJa,b]). Let ¢ =sup Ag. Then ¢ € X and ¢ € Ag as Ap is closed. Since Ag is open there is
some ¢ such that ¢ 4+ e € Ay. But ¢ + € > ¢ which contradicts ¢ being sup Ag. Oopsies! O

Example 1.8 (Topologist’s sine curve). The topologist’s sine curve is an example of a space which is connected, but
not path connected. Let f: (0,1] — R be defined by f(z) = sin(1/z). Let S C R? be the graph of f. The topologist’s

sine curve is thus defined to be S. It is connected, because it is the closure of the image of a connected space under
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a continuous function. (The function is « — (z, f(x))). However, we run into an issue when trying to construct a
path from z € S to the set of limit points of S. For concreteness, let us suppose we are trying to connect x to (0, 0).
Suppose we somehow have a path p : [0,1] — S from x to (0,0). Let L = {0} x [~1,1] (which is the set of limit
points of S). L is closed in S, so p~1(L) is closed too.

See [Mun00, Example 7, pp. 156-157] for full argument. (For an explicit value of u that can be chosen, you can pick

u= m so sin(l/u) =1, and u = m if you need sin(1/u) = —1.) /
)
1
-1

Figure 1: Topologist’s sine curve

Proposition 1.9 (Separations and connected subspaces). Let X be a topological space and letY be a (path) connected
subspace of X. If AU B s a separation of X, then either Y C A orY C B.

Proof. I Y is not fully contained within either A or B then we can separate Y with (Y N A)U (Y N B). O

Proposition 1.10 (Union of (path)-connected subspaces with a common point is (path)-connected). Let X be a
topological space and let A, be a collection of (path) connected spaces and suppose z € A, for all a, so the Ay ’s have
a common point. Then, |J Ay is (path) connected.

Proof. We first prove it for path connectedness. Let z be a point in common. If z,y € |J Aq, say € A, and y € Ag.
Then, glue a path from x to z and a path from z to y together. This one is easy to visualize by drawing a picture.

Let us now prove it for connectedness. Suppose that | J A, is the union of disjoint open sets AU B. Then z € A
or z € B. Suppose without loss of generality that z € A. Then for all a, A, must intersect A. By the previous
proposition, all A, C A. So this means B is empty. Thus there is no separation of | J A,. O

Proposition 1.11 (Closure of a space is connected). Suppose A is a connected subspace of X and B is a set such
that A C B C A. Then, B is connected.

Proof. Use Proposition 1.9. (For full proof, see [Mun00] or [Leell, Prop 4.9, p. 88].) O

It is important to note that this proposition is untrue if A is path connected. See Example 1.8 for this happening.

Theorem 1.12 (Main theorem on connectedness). Let X be a connected space and let f: X — Y be a continuous
function. Then f[X] is connected.

Proof. If not, let A, B be a separation of f[X]. Then f~1(A), f~1(B) separate X. O

Note here that A, B are considered as open/closed sets in the subspace topology on f[X]. The above theorem is also
true with path-connectedness in place of connectedness. The proof is obvious, as you can simply compose the path
with f.

Corollary 1.13 (Connectedness is invariant under homeomorphism). Any space homeomorphic to a connected space
is connected.
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Proof. Duh. O

Corollary 1.14 (Intermediate value theorem). Let f: X — R and suppose X is connected. If p,q € X then [ attains
every value between f(p) and f(q).

Proof. Suppose without loss of generality that f(p) < f(q). Then f[X] is connected so it must contain [f(p), f(q)]. O

See [Leell, Thm 4.12, p. 89] for further details.

Warning. The preimage of a connected or path-connected space need not be connected. Take X = R with the
discrete topology and Y = R with the trivial topology. Then the identity is continuous from X to Y but the preimage
of Y is disconnected.

Proposition 1.15 (Finite product of connected is connected). If X, Y are connected spaces then X XY is connected.

Y

Figure 2: Proof that the finite product of connected spaces is connected

Proof. Fix a point (a,b) € X x Y. Define T, = {2} x YU X x {b}. This set is connected as it is the union of 2
connected sets with the point (a,b) in common. Then X x Y = J, .y T%. This is a union of connected spaces with
the point (a,b) in common. (See Section 1 for a better visualization. See [Mun00, Thm 23.6, p. 148] for complete
proof.) O

The product topology preserves connectedness (which is nice).
Proposition 1.16 (Product of (path) connected spaces is connected). If X, is a collection of (path)-connected
spaces, then X = [[ X4 is (path)-connected.

Proof. (Path-connectedness) Let x,y € [ Xq, writing x = (24 : @ € A) and y = (y, : @ € A). Since each X, is path
connected, for each a, let f, : I — X, be a path from z, to y,. We simply glue these paths together by taking
f(t) = (fa(t) : @« € A) which is a path from x to y.

(Connectedness) Fix a point a = (aq : @ € A). If F' C A is finite, then define
Xp={xeX:zo=aqifac A\ F}.

So X is the set of all x € X such that z, = a, for all coordinates except those in F. We thus see that X is

homeomorphic to [], . Xa. Since finite products of connected spaces are connected, X is connected.

Now, set Z = Jpcy |F|<w Xp. This is the union of Xg’s across all finite subsets F' C A. Then Z is connected, as

each Xr has the point a in common (Proposition 1.10). Additionally, we claim that Z = X. This will finish it off
(Proposition 1.11), so let us see why this is true. Pick x € X and let U be a neighborhood of x in the product
topology. We need to show that U intersects Z. Since we are in the product topology, this means that U = [],c Ua
and U, = X, except for finite . Say those a’s are all in the set F. Define

ro ifaé€F,
Zo = .
a, otherwise.

Then z € X NU so the point z is in the closure of Z. O
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The box topology is usually not going to be connected.
Example 1.17 (Countable product of R with the box topology). Let X =[],y R and give it the box topology. Let

(> ={x R :sup|z,| <oo}.
neN

This is the set of bounded real-valued sequences. We shall show that ¢ is clopen. Since ¢ is not all of RY
(by obviousness) we will be done. Let x € £*° be a bounded sequence. Consider the neighborhood of x given by
U =Il,en B(2n,1). Notice if y € U, then |y,| < |2z,| + 1 < sup, ey |2n| + 1 so y must be a bounded sequence too.
For being closed, notice that the complement is open. (Use the same argument). /
Remark 1.18 (Path-connectedness of finite products). For the finite case the proof is very easy. Given a point
(x0,y0) € X x Y and a point (z1,y1) € X X Y, since X, Y are respectively path connected let p be a path in X from
o to 1 and ¢ be a path in Y from yg to y;. Then the map p X ¢ is the desired path. Apply induction and the fact
that (X x Y) x Z is homeomorphic to X x Y x Z.
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