
MAT327 notes Week 6 June 2024

Week 6

Robert

June 2024

List of Definitions
1.1 Definition (Final Topology) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Definition (Initial topology) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1 Definition (Quotient topology) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Definition (Equivalence relation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.8 Definition (∼-saturation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

List of Propositions
1.3 Proposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Lemma (Properties of equivalence relations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.6 Theorem (Every quotient topology is induced by an equivalence relation) . . . . . . . . . . . . . . . . 4
2.9 Proposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.10 Theorem (Sufficient conditions for the subspace topology to be the quotient topology) . . . . . . . . . 5

LIST OF PROPOSITIONS 1



MAT327 notes Week 6 June 2024

1 Final topologies
The final topology is the dual1 notion of initial topology. With the initial topology, we have a family of maps with
a common domain X, and we want to topologize X in a way that makes all the maps continuous. With the final
topology, we have a family of maps with a common codomain Y instead, and we would like to topologize Y in a way
that makes all the maps continuous.

Definition 1.1 (Final Topology). Let Y be a set and let {Xα : α ∈ Λ } be a collection of topological spaces. Let

F = { fα : Xα → Y : α ∈ Λ }

be a family of functions. Then the final topology of F is defined to be

{U ⊆ Y : f−1
α (U) is open in Xα for all α ∈ Λ } .

In a sense, we are interested in providing Y with a topology that makes all the fα’s continuous. Notice here that Y is
the codomain of our fα’s.

For reference, here is the definition of initial topology.

Definition 1.2 (Initial topology). Let X be a set, and let {Yα : α ∈ Λ } be a collection of topological spaces. Let

F = { fα : X → Yα : α ∈ Λ }

be a family of functions. Then the initial topology of F is defined to be⋂
{ τ : τ is a topology on X and every element of F is τ − continuous } .

Proposition 1.3. The final topology of F is the finest topology on Y where all the elements of F are continuous.

Proof. Denote the final topology with τF. Suppose τ is a topology that makes all the fα’s continuous. Then τ ⊆ τF.
To see this, let U ∈ τ . Then for every α, we have f−1

α (U) being open in Xα, as fα is τ continuous. This means
U ∈ τF.

We can now see an application of final topologies.
1In this case, the duality is actually the categorical duality!
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2 Quotient topology
Definition 2.1 (Quotient topology). Let X be a topological space and Y be a set. Let q : X → Y be a surjective
function. Then the final topology of { q } is called the quotient topology induced by q.

If Y is a topological space, then Y is a quotient of X if the topology on Y is the quotient topology induced by
some surjective function q : X → Y .

Again, keep in mind here that Y is being topologized by the final topology induced by q. One (relatively immediate)
observation is that a set O ⊆ Y is open in the quotient topology on Y if and only if q−1(O) is open in X. In fact,
this is an alternative way to define the quotient map.

We often use the quotient topology to put a topology on the set of equivalence classes. Let us recall the definition of
a equivalence relation.

2.1 Equivalence relations
Definition 2.2 (Equivalence relation). Let X be a set. Then an equivalence relation ∼ on X is a relation such that

1. (Reflexive) x ∼ x,

2. (Symmetric) if x ∼ y then y ∼ x,

3. (Transitive) if x ∼ y and y ∼ z then x ∼ z.

The intuition here is that equivalence relations try to capture the notion of equality. In fact, = is an equivalence relation.
More examples of equivalence relations are n ∼ m iff n mod k = m mod k (here, n,m ∈ Z and k ∈ N, k > 0).

Given an equivalence relation on X, we can partition2 the set X into equivalence classes. We define

[x]∼ = { y ∈ X : y ∼ x } .

Notice that we now have the following properties:
Lemma 2.3 (Properties of equivalence relations). Let X be a set and ∼ be an equivalence relation on X. Then,

1. X =
⋃

x∈X [x]∼,

2. Equivalence classes are equal or disjoint: If [x]∼ 6= [y]∼, then [x]∼ ∩ [y]∼ = ∅.

Proof. The first is obvious. For the second, we prove the contrapositive. Suppose z ∈ [x]∼ ∩ [y]∼. Then z ∼ x and
z ∼ y by definition. By transitivity we have x ∼ y, and by transitivity again, every element related to y is also related
to x.

Given an equivalence relation ∼ on X, we denote the set of equivalence classes,

X∼ = X/ ∼= { [x]∼ : x ∈ X } .

There is a canonical surjective function3 from X to X∼ which sends an element x ∈ X to its equivalence class [x]∼.
We shall denote it by p∼, and it is defined as

p∼(x) = [x]∼.

2.2 Examples of quotient spaces
We can now see some examples of quotient spaces. The reader is encouraged to check out [Lee11, pp. 62–68] for many
more examples of quotient spaces.
Example 2.4 (The sphere S2 as a quotient space). Let D ⊆ R2 be the unit disk, i.e. D = { 〈x, y〉 : x2 + y2 ≤ 1 }.

2Note that the word ”partition” has a rigorous definition.
3Some authors call call this the natural projection.
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p−1(U)

Figure 1: Unit disk D ⊆ R2

Define ∼ on D by
〈x, y〉 ∼ 〈z, w〉 iff 〈x, y〉 = 〈z, w〉 or x2 + y2 = z2 + w2 = 1.

Intuititively, every point in the interior of D (the interior is shaded in gray) stays distinct, and every point on the
boundary (colored in blue) is the ”same” under ∼. Now, the set of equivalence classes of D, D/ ∼ can be visualized
as in Figure 2.

U

∂D

Figure 2: The sphere constructed from the unit disk

//
Example 2.5 (Torus as a quotient space). See [Lee11, Example 3.49 on p. 66]. //

One might wonder whether quotient spaces always come from some kind of equivalence relation. The answer is yes.

Theorem 2.6 (Every quotient topology is induced by an equivalence relation). If Y is a quotient space of X, then
there is an equivalence relation ∼ on X such that Y is homeomorphic to X∼ (endowed with the quotient topology
induced by p∼).

Before we embark on the proof, readers who have had a little group theory will realize that this is basically quotienting
by the kernel of a homomorphism. It turns out that this construction is valid in a lot of (concrete) categories as well

Proof. We would like to show that if Y is such that there exists some surjective function q : X → Y where the
topology of Y is the quotient topology induced by q then there exists an equivalence relation on X such that X∼ is
homeomorphic to Y . We first show the existence of such an equivalence relation. Let ∼ in X be defined as follows:
x ∼ y if and only if q(x) = q(y). This is easily seen to be an equivalence relation.

Now we begin constructing the homeomorphism. Let f : X∼ → Y be defined by f([x]∼) = q(x). Then f is a
well-defined function, if we have [x]∼ = [x′]∼, then f(x′) = q(x′) = q(x) = f(x) by definition of ∼. We also check
that f is a bijection by finding it’s inverse, f−1 : Y → X∼. We’ll just write it down:

f−1(y) = {x ∈ X : q(x) = y } .

2 QUOTIENT TOPOLOGY 4
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X

X∼ Y

p∼
q

f

Figure 3: Commutative diagram expressing the proof of Theorem 2.6

This is indeed an inverse. So f is a bijection. All that is left is to show that f and f−1 are continuous. Let U ⊆ Y be
open. Then

f−1(U) = { [x]∼ : f([x]∼) ∈ U } = { [x]∼ : q(x) ∈ U } .

Let p∼ : X → X∼ be the canonical projection that sends x to [x]∼. Consider p−1
∼ ({ [x]∼ : q(x) ∈ U }) = {x ∈ X : q(x) ∈ U } =

q−1(U). q−1(U) is open in X because q is continuous, but by definition of quotient topology this means { [x]∼ : q(x) ∈ U }
is open. Thus we have shown that f is continuous. We leave the proof of the continuity of f−1 to the reader. (Just
show that f is open)

2.3 Properties of quotient spaces
Unfortunately, quotient spaces are quite badly behaved. The first part where they don’t play so nice is with the
subspace topology. In other words, taking a quotient of a subspace is not the same as taking a subspace of a quotient
space. Let q : X → Y be a surjective map. This induces the quotient topology in Y . Let A ⊆ X and give A the
subspace topology. Consider q |A: A → q[A]. There are 2 ways to think about the topology on q[A]: as a subspace of
Y or as a quotient space of A. It turns out that these may not be equal.

In the next example, we will see that the restriction of a quotient map down to a subspace may not be a quotient
map. See [Lee11, Prob 3-11, p. 82] for a better statement of this result.
Example 2.7. Let X = [0, 1] ∪ [2, 3] ⊆ R with the subspace topology from R. Let Y = [0, 2] with the subspace
topology from R. Let q be defined by q(x) = x if x ∈ [0, 1] and q(x) = x− 1 if x ∈ [2, 3]. Then q is a quotient map
from X to Y .

Now let A = [0, 1) ∪ [2, 3] (notice we are taking the half open interval!) and take q |A: A → [0, 2]. Consider
q |−1

A ([1, 3/2)) = [2, 3/2 + 1). The set [1, 3/2) is not open, but it has an open preimage. This prevents q |A from
being a quotient map as q |A is not continuous. //

However, it turns out if A ⊆ X is open, and it is the preimage of some subset of Y , then q |A is a quotient map. See
[Lee11, Prop 3.62, p. 70] for this result.

Definition 2.8 (∼-saturation). Let ∼ be an equivalence relation on X. A subset A ⊆ X is ∼-saturated if and
only if

A =
⋃
x∈A

[x]∼.

This definition can be alternatively thought of as follows: Let p∼ : X → X∼ be the map that sends an element x ∈ X
to its equivalence class [x]∼. Then A ⊆ X is ∼-saturated iff we have A =

⋃
x∈A p−1

∼ ({x }). Sometimes, one might see
p−1
∼ (x) instead of p−1

∼ ({x }). In this case, they mean the same thing. We call the preimage of the singleton x the
fiber of x. So in other words, a set A is ∼-saturated if and only it is the union of fibers. See [Lee11, Exercise 3.59 on
p. 69] for a useful characterization of a set being saturated.
Proposition 2.9. If A ⊆ X is ∼-saturated, then A∼ ⊆ X∼.

Proof. If ∼ is an equivalence relation on X and A ⊆ X, then ∼ induces an equivalence relation on A, call it ∼A. This
is simply the restriction of ∼ to A, i.e. a ∼A b ⇐⇒ a ∼ b. Then [a]∼A

= [a]∼. Let A ⊆ X be a subspace and let
p∼ : A → A∼, which is really just p∼ : X → X∼ but restricted.

Theorem 2.10 (Sufficient conditions for the subspace topology to be the quotient topology). If A is open (closed)
or p∼ is an open (closed) map, then the subspace topology on A∼ as a subset of A∼ is the same as the quotient
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topology on A∼ induced by p∼.

We additionally encourage the reader to check out [Lee11, Proposition 3.60 on p. 69].

Proof. Let A∼ ∩ V be an open subset of A∼ as a subspace of X∼. We need to prove A∼ ∩ V is open in X∼, which
amounts to showing that p−1

∼ (A∼ ∩ V ) is open. Now, since A∼ is saturated, we have

p−1
∼ (A∼ ∩ V ) = p−1

∼ (A∼) ∩ p−1
∼ (V ) = A ∩ p−1

∼ (V ).

Since A ∩ p−1
∼ (V ) is open in the subspace topology in A, this means that A∼ ∩ V is open in the quotient A∼. Let

U ⊆ A∼ be open in the quotient topology induced by p∼ |A: A → A∼. We claim that if A is open and saturated,
then A∼ ⊆ X∼ is also open (proof: exercise). So U is open in the quotient if and only if p∼ |−1

A (U) is open in A. But
notice that p∼ |−1

A (U) = {x ∈ X : [x]∼ ∈ U }. This is open in A if and only if it is equal to A ∩ V , where V is some
open subset of X. Then, we leave the reader to check that

U = p∼
(
p∼ |−1

A (U)
)
= p∼({x ∈ A : [x]∼ ∈ U }) = p∼(A ∩ V ) = A∼ ∩ p∼(V ).

We remark that a quotient space of a Hausdorff space may not be Hausdorff.
Example 2.11. Let X = R and let f be the sign function be defined by

f(x) =


1 x > 0

0 x = 0

−1 x < 0

.

//

sgn

Example 2.12 (Points are closed, but not Hausdorff). Let X = RK (the K-topology) and define the equivalence
relation on X by a ∼ b if and only if a = b or a, b ∈ K. Then, X∼ is not Hausdorff, but points are closed. To see why
this is not hausdorff, notice that we cannot find disjoint open neighborhoods of [0]∼ and [1]∼. Indeed, [0]∼ = { 0 }
and [1]∼ = K. But any neighborhood of [1]∼ must contain all the 1/n’s (by looking at the neighborhood in X) and
thus contain 0. //

Additionally, products and quotients also do not behave well. If Y is a quotient space of X, and q : X → Y is a
surjective map, then it may not be true that the product topology on Y × Y is the same as the quotient topology
induced by q × q. That is to say, there is a difference between first putting the quotient topology on Y using q and
taking the product Y × Y , versus putting the quotient topology on Y × Y with q × q.
Example 2.13. We make use of Example 2.12 and the following fact: the diagonal of X, which is the set
∆X = { 〈x, x〉 : x ∈ X } is closed in X ×X if and only if X is Hausdorff. Let q be the quotient map which is given
by ∼. It is true that ∆ is closed in X × X, but ∆X∼ is not closed in X∼ × X∼ as it is not Hausdorff. However,
(q × q)

−1
(∆X∼) = ∆X , so q × q cannot be a quotient map. //
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