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1 Final topologies

The final topology is the dual' notion of initial topology. With the initial topology, we have a family of maps with
a common domain X, and we want to topologize X in a way that makes all the maps continuous. With the final
topology, we have a family of maps with a common codomain Y instead, and we would like to topologize Y in a way
that makes all the maps continuous.

Definition 1.1 (Final Topology). Let Y be a set and let { X,, : & € A} be a collection of topological spaces. Let
F={fa: Xa—>Y:aeA}
be a family of functions. Then the final topology of ¥ is defined to be

{UCY: f;Y(U)is open in X, foralla € A}.

In a sense, we are interested in providing Y with a topology that makes all the f,’s continuous. Notice here that Y is
the codomain of our f,’s.

For reference, here is the definition of initial topology.

Definition 1.2 (Initial topology). Let X be a set, and let {Y,, : @ € A} be a collection of topological spaces. Let
F={fa: X2Y,:aeA}

be a family of functions. Then the initial topology of F is defined to be

ﬂ {7 :7 is a topology on X and every element of F is 7 — continuous } .

Proposition 1.3. The final topology of F is the finest topology on Y where all the elements of F are continuous.
Proof. Denote the final topology with 74. Suppose 7 is a topology that makes all the f,’s continuous. Then 7 C 74.
To see this, let U € 7. Then for every «, we have f;}(U) being open in X,, as f, is 7 continuous. This means

U € 1. O

We can now see an application of final topologies.

n this case, the duality is actually the categorical duality!
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2 Quotient topology

Definition 2.1 (Quotient topology). Let X be a topological space and Y be a set. Let ¢ : X — Y be a surjective
function. Then the final topology of { ¢} is called the quotient topology induced by q.

If Y is a topological space, then Y is a quotient of X if the topology on Y is the quotient topology induced by
some surjective function ¢ : X — Y.

Again, keep in mind here that Y is being topologized by the final topology induced by g. One (relatively immediate)
observation is that a set O C Y is open in the quotient topology on Y if and only if ¢~*(O) is open in X. In fact,
this is an alternative way to define the quotient map.

We often use the quotient topology to put a topology on the set of equivalence classes. Let us recall the definition of
a equivalence relation.

2.1 Equivalence relations

Definition 2.2 (Equivalence relation). Let X be a set. Then an equivalence relation ~ on X is a relation such that
1. (Reflexive) z ~ z,
2. (Symmetric) if z ~ y then y ~ z,

3. (Transitive) if z ~ y and y ~ z then = ~ z.

The intuition here is that equivalence relations try to capture the notion of equality. In fact, = is an equivalence relation.
More examples of equivalence relations are n ~ m iff n mod k = m mod k (here, n,m € Z and k € N,k > 0).

Given an equivalence relation on X, we can partition® the set X into equivalence classes. We define
ol = {yeX y~a}.

Notice that we now have the following properties:
Lemma 2.3 (Properties of equivalence relations). Let X be a set and ~ be an equivalence relation on X. Then,

1 X =U,ex 2],
2. Equivalence classes are equal or disjoint: If [x]_ # [y]., then [z] N [y]. = 2.

~

Proof. The first is obvious. For the second, we prove the contrapositive. Suppose z € [z]~ N [y]~. Then z ~ = and
z ~ y by definition. By transitivity we have x ~ y, and by transitivity again, every element related to y is also related
to x. O

Given an equivalence relation ~ on X, we denote the set of equivalence classes,

Xo=X/r~={[zg]lo:zeX}.

There is a canonical surjective function® from X to X. which sends an element z € X to its equivalence class [x]~.
We shall denote it by p., and it is defined as

2.2 Examples of quotient spaces

We can now see some examples of quotient spaces. The reader is encouraged to check out [Leell, pp. 62-68] for many
more examples of quotient spaces.
Example 2.4 (The sphere S? as a quotient space). Let D C R? be the unit disk, i.e. D = {(z,y): 2?2 +y> <1}.

2Note that the word ”partition” has a rigorous definition.
3Some authors call call this the natural projection.
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Figure 1: Unit disk D C R2

Define ~ on D by
(2, ) ~ (2,w0) fE (2, ) = (2,0) or 2 + 37 = 22 +w? = 1.

Intuititively, every point in the interior of D (the interior is shaded in gray) stays distinct, and every point on the
boundary (colored in blue) is the ”same” under ~. Now, the set of equivalence classes of D, D/ ~ can be visualized
as in Figure 2.

oD

v ---- O

Figure 2: The sphere constructed from the unit disk

/

Example 2.5 (Torus as a quotient space). See [Leell, Example 3.49 on p. 66]. /

One might wonder whether quotient spaces always come from some kind of equivalence relation. The answer is yes.

Theorem 2.6 (Every quotient topology is induced by an equivalence relation). If Y is a quotient space of X, then
there is an equivalence relation ~ on X such that Y is homeomorphic to X .. (endowed with the quotient topology
induced by p..).

Before we embark on the proof, readers who have had a little group theory will realize that this is basically quotienting
by the kernel of a homomorphism. It turns out that this construction is valid in a lot of (concrete) categories as well

Proof. We would like to show that if Y is such that there exists some surjective function ¢ : X — Y where the
topology of Y is the quotient topology induced by ¢ then there exists an equivalence relation on X such that X is
homeomorphic to Y. We first show the existence of such an equivalence relation. Let ~ in X be defined as follows:
x ~ y if and only if g(x) = ¢(y). This is easily seen to be an equivalence relation.

Now we begin constructing the homeomorphism. Let f : X. — Y be defined by f([z]~) = ¢(z). Then f is a
well-defined function, if we have [z]. = [2]~, then f(2) = q(2’) = ¢(x) = f(z) by definition of ~. We also check
that f is a bijection by finding it’s inverse, f=!:Y — X._. We’ll just write it down:

i y)={zeX:qz)=y}.

2 QUOTIENT TOPOLOGY 4
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Y

X
p~l X
X~ —
Figure 3: Commutative diagram expressing the proof of Theorem 2.6

This is indeed an inverse. So f is a bijection. All that is left is to show that f and f~! are continuous. Let U C Y be
open. Then

FHU) = {lal~: f(l2]o) €U} = {[a]~ 1 qlz) €U}

Let p. : X — X. be the canonical projection that sends  to [x].. Consider pZ*({[z]~ : q(z) eU}) ={z € X : q(x) €U } =
q Y(U). ¢ 1(U) is open in X because q is continuous, but by definition of quotient topology this means { [z]~ : ¢(z) € U }

is open. Thus we have shown that f is continuous. We leave the proof of the continuity of f~! to the reader. (Just

show that f is open) O

2.3 Properties of quotient spaces

Unfortunately, quotient spaces are quite badly behaved. The first part where they don’t play so nice is with the
subspace topology. In other words, taking a quotient of a subspace is not the same as taking a subspace of a quotient
space. Let ¢ : X — Y be a surjective map. This induces the quotient topology in Y. Let A C X and give A the
subspace topology. Consider ¢ |4: A — g[A]. There are 2 ways to think about the topology on ¢[A]: as a subspace of
Y or as a quotient space of A. It turns out that these may not be equal.

In the next example, we will see that the restriction of a quotient map down to a subspace may not be a quotient
map. See [Leell, Prob 3-11, p. 82] for a better statement of this result.

Example 2.7. Let X = [0,1] U [2,3] C R with the subspace topology from R. Let Y = [0,2] with the subspace
topology from R. Let ¢ be defined by ¢(z) = z if x € [0,1] and ¢(z) = 2 — 1 if € [2,3]. Then ¢ is a quotient map
from X to Y.

Now let A = [0,1) U [2,3] (notice we are taking the half open intervall) and take ¢ |4: A — [0,2]. Consider
q \:‘1 ([1,3/2)) = [2,3/2+1). The set [1,3/2) is not open, but it has an open preimage. This prevents g |4 from
being a quotient map as ¢ |4 is not continuous. /

However, it turns out if A C X is open, and it is the preimage of some subset of Y, then ¢ |4 is a quotient map. See
[Leell, Prop 3.62, p. 70] for this result.

Definition 2.8 (~-saturation). Let ~ be an equivalence relation on X. A subset A C X is ~-saturated if and

only if
A= U [x]~.

€A

This definition can be alternatively thought of as follows: Let p.. : X — X be the map that sends an element x € X
to its equivalence class []~. Then A C X is ~-saturated iff we have A =J, ., p=' ({2 }). Sometimes, one might see
p=!(z) instead of pZ1({x }). In this case, they mean the same thing. We call the preimage of the singleton x the
fiber of x. So in other words, a set A is ~-saturated if and only it is the union of fibers. See [Leell, Exercise 3.59 on
p. 69] for a useful characterization of a set being saturated.

Proposition 2.9. If A C X is ~-saturated, then A. C X..

Proof. If ~ is an equivalence relation on X and A C X, then ~ induces an equivalence relation on A, call it ~ 4. This

is simply the restriction of ~ to A4, i.e. a ~4 b < a ~b. Then [a]., = [a]~. Let A C X be a subspace and let
p~ : A — AL, which is really just p. : X — X but restricted. O

Theorem 2.10 (Sufficient conditions for the subspace topology to be the quotient topology). If A is open (closed)
or p~. is an open (closed) map, then the subspace topology on A., as a subset of A is the same as the quotient
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topology on A. induced by p.~.

We additionally encourage the reader to check out [Leell, Proposition 3.60 on p. 69].

Proof. Let A, NV be an open subset of A. as a subspace of X.. We need to prove A. NV is open in X . , which
amounts to showing that p_!(A. NV) is open. Now, since A. is saturated, we have

p (AN V) =plt(A) Npll(V) = AnplH(V).

Since AN pZ1(V) is open in the subspace topology in A, this means that A. NV is open in the quotient A.. Let
U C A. be open in the quotient topology induced by p.. |4a: A — A.. We claim that if A is open and saturated,
then A. C X. is also open (proof: exercise). So U is open in the quotient if and only if p.. | ;' (U) is open in A. But
notice that p. |3* (U) = {2 € X : [z]. € U}. This is open in A if and only if it is equal to ANV, where V is some
open subset of X. Then, we leave the reader to check that

U=p~ (o~ 13 (U) =pa({z € Aifz]e €UY) =p(ANV) = AL Np(V).

We remark that a quotient space of a Hausdorff space may not be Hausdorff.
Example 2.11. Let X =R and let f be the sign function be defined by

1 x>0
f@) =40 z=o0.
-1 <0

/

sin
Example 2.12 (Points are closed, but not Hausdorff). Let X = Rg (the K-topology) and define the equivalence
relation on X by a ~ b if and only if a = b or a,b € K. Then, X is not Hausdorff, but points are closed. To see why
this is not hausdorff, notice that we cannot find disjoint open neighborhoods of [0].. and [1].. Indeed, [0]. = {0}

and [1]. = K. But any neighborhood of [1]. must contain all the 1/n’s (by looking at the neighborhood in X) and
thus contain 0. /

Additionally, products and quotients also do not behave well. If Y is a quotient space of X, and ¢ : X — Y is a
surjective map, then it may not be true that the product topology on Y x Y is the same as the quotient topology
induced by g x ¢q. That is to say, there is a difference between first putting the quotient topology on Y using ¢ and
taking the product Y x Y, versus putting the quotient topology on Y x Y with ¢ x q.

Example 2.13. We make use of Example 2.12 and the following fact: the diagonal of X, which is the set
Ax ={{(z,z):x € X} is closed in X x X if and only if X is Hausdorff. Let ¢ be the quotient map which is given
by ~. It is true that A is closed in X x X, but Ax_ is not closed in X x X as it is not Hausdorff. However,
(g x q)_l(AXN) = Ax, so ¢ X ¢ cannot be a quotient map. /
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