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1 Separation axioms

Here, the word separation shall mean that we can put disjoint open neighborhoods around things.

Definition 1.1 (T1 space). A space X is T1 if points are closed.

Definition 1.2 (T2 space). A space is T2 if it is Hausdorff. Recall that a space is Hausdorff if you can separate
points with disjoint closed sets.

Definition 1.3 (T3 space). A space is regular or T3 if it is T1 and given a point x and a closed set C such that
x ̸∈ C, there is a neighborhood U of x and V ⊇ C such that U, V are disjoint.

In other words, a space is T3 if we can separate points from closed sets.

Definition 1.4 (T3.5 space). A space is completely regular if it is T1 and given a point x and a closed set C
not containing x, there exists a continuous function f : X → [0, 1] such that f(x) = 0 and f [C] = { 1 }.

Definition 1.5 (T4 space). A space is normal if it is T1 and given disjoint closed sets C,D, there exists disjoint
open sets U, V such that C ⊆ U and D ⊆ V .

Clearly normal implies regular implies Hausdorff. A completely regular space is also regular. Normal also implies
completely regular, but this is nontrivial (Lemma 1.15).

Proposition 1.6 (Completely regular implies regular). A completely regular space is regular.

Proof. Suppose X is completely regular. Let x be a point and A a closed set not containing x. Then, there is a
function f : X → [0, 1] such that f(x) = 0 and f is 1 on A. Now preimage some disjoint open neighborhoods of 0 and
1.

The implications are not reversible.
Example 1.7 (T1 but not Hausdorff). Let X = R with the cofinite topology. Then X is clearly T1 since singletons
are finite and are thus closed. It is easily seen to be not Hausdorff. //
Example 1.8 (Hausdorff but not regular). Let X = RK be the K-topology on the reals. However, it is not regular
since we cannot separate the set K from the point 0. //

Lemma 1.9 (Equivalent condition to regularity). Let X be a topological space. Then X is regular if and only if
for every x ∈ X and neighborhood U of x, there is a neighborhood V of x such that V ⊆ U .

Proof. For the forward direction, apply the definition of regularity to the closed set X \U . For the converse direction,
if C is a closed set not containing x, then X \ C is a neighborhood of x.

Lemma 1.10 (Equivalent condition to normality). Let X be a topological space. Then X is normal if and only if
given a closed set C ⊆ X and an open set U ⊇ C, there exists an open set V such that C ⊆ V and V ⊆ U .

Proof. Same idea as Lemma 1.9.
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Proposition 1.11 (Regularity of subspace and products). 1. A subspace of a (completely) regular space is (com-
pletely) regular.

2. Products of (completely) regular space is (completely) regular.

Proof. 1. Let X be regular, and Y ⊆ X. Let y ∈ Y and A ⊆ Y be closed with y ̸∈ A. Then there is some C ⊆ X
closed such that A = C ∩ Y . Clearly x ̸∈ C so we may find disjoint U, V containing x and C respectively. Then
U ∩ Y , V ∩ Y are the neighborhoods as desired. If X is completely regular instead, let f : X → [0, 1] be a
function that separates y and C. The restriction of f to Y is still continuous and has the desired property.

2. Let Xα, α ∈ Λ be a collection of regular spaces. Set X =
∏

α∈Λ Xα. Given a point x = ⟨xα : α ∈ Λ⟩ ∈ X, let
U =

∏
α∈Λ Uα be an open neighborhood of x, so that Uα = Xα for all but finitely many α. For those Uα which

are not equal to Xα, we may find Vα such that xα ∈ Vα and Vα ⊆ Uα (by Lemma 1.9). For those Uα which are
equal to Xα, set Vα to be Xα. Then V :=

∏
α∈Λ Vα has closure contained in U , since

∏
α∈Λ Vα =

∏
α∈Λ Vα.

Now suppose the Xα’s are now completely regularly. Let A be closed in X and not containing x. Let U ⊆ X be
a basic open neighborhood of x that is disjoint from A. (This uses regularity of Xα, but finitely many of them).
Now, U is the product of open sets Uα in Xα’s. Then there are Uα’s which are not Xα’s, finitely many of them,
say α1, . . . , αn. For each αi, let fi : Xαi

→ [0, 1] be a continuous function such that fi(xαi
) = 0, and f is 1 on

the set Xαi
\ Uαi

. Define gi to be fi ◦ παi
and let g(x) =

∏
i≤n gi(x). Then g is the desired function.

A similar proposition is not true for normal spaces.
Example 1.12 (Product of normal may not be normal). Let X = Rl be the Sorgenfrey line. Then X is normal.
Let A,B be disjoint closed sets. For a ∈ A, let [a, xa) ⊆ X be disjoint from B. This is possible because X \ A is
open. We repeat the same trick for each b ∈ B, letting [b, xb) ⊆ X be disjoint from A. Now, A ⊆

⋃
a∈A[a, xa) and

B ⊆
⋃

b∈B [b, xb). We claim that those unions are disjoint. Otherwise, let a ∈ A, b ∈ B such that [a, xa) ∩ [b, xb) ̸= ∅.
WLOG let us assume a < b, so this means xa > b. But then b ∈ [a, xa), oops.

However, X × X is not normal. Let L be the line consisting of the points ⟨x,−x⟩. This set is closed1, and it is
discrete, so every subset of L is closed in X ×X. For all A ⊆ L, we have disjoint open sets UA, VA of X ×X, such
that A ⊆ UA, L \A ⊆ VA. Let us now define a function f : P(L) → P(Q2) as follows:

f(∅) = ∅,

f(L) = Q2,

f(A) = UA ∩Q2 if ∅ ⊂ A ⊂ L.

We claim that f is injective. To see this, let A be a subset of L. If A is nonempty, then UA is nonempty. As Q2 is
dense in X ×X, f(A) is nonempty. If A is a proper subset of L, then L \ A is nonempty, and so VA is nonempty.
Thus f(A) is not all of Q2. Now suppose A,B are subsets of L and A ̸= B. WLOG let x ∈ A \ B. Thus x ∈ UA

and x ∈ VB , so UA ∩ VB is a nonempty open set, thus it contains an element of Q2, say q. Then q ∈ f(A) \ f(B), so
f(A) ̸= f(B).

However, f cannot be injective, since the cardinality of P(L) is strictly bigger than the cardinality of P(Q2).

See [Mun00, Example 3, p. 198] for a full exposition. //
Example 1.13 (Subspaces of normal need not be normal). The following example is called Tychonoff’s plank (see
[SS78, Example 87, p. 106]). Let us take X = αω1 × αω. Recall that αX of a locally compact Hausdorff space X is
the one-point compactification of it. Clearly X is compact and Hausdorff. Now, let us set Y to be X \ (∞αω1 ,∞αω),
so we remove the point added by the one point compactification. Let A = ω1 × {∞αω }, let B = {∞αω1 } × ω. //

The following proposition gives sufficient conditions for normality. Similar theorems can be seen in [Mun00, Chp. 32,
pp. 198–203].

1Previously proven
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αω1

αω

Proposition 1.14 (Sufficient conditions for normality). Let X be a space. Then X is normal if at least one of the
conditions are satisified:

1. X is regular and Lindelof;

2. X is compact and Hausdorff;

3. X is metrizable;

4. X is a linearly ordered space (with the order topology).

Proof. (1) Suppose X is regular. Let A,B be closed and disjoint in X. For each a ∈ A, there are disjoint neighborhoods
Ua of a and Va of B. Since X is regular there is a neighborhood Wa of a such that Wa ⊆ Ua. The collection of these
Wa’s is an open cover of A, and since A is closed, it too is Lindelof; thus it has a countable subcover. Let us denote
this subcover by {Wi }. Observe that each Wi has closure that is disjoint from B. Let us now repeat this construction
for B, so that we have a countable collection of sets {Vi } such that Vi has closure disjoint from A.

We now set W ′
n = Wn \

⋃n
i=1 Vi and V ′

n = Vn \
⋃n

i=1 Wi. Then each W ′
n and V ′

n are open. The collections {W ′
n } and

{V ′
n } still cover A and B, since if a ∈ A, then a ∈ Wn for some n, and a is not in Vi for all i as Vi is disjoint from A,

thus a ∈ W ′
n. A similar idea holds for B. Set W =

⋃
W ′

n and V =
⋃

V ′
n. We are basically done; all that’s left is to

show W,V are disjoint. Suppose not, then there is some point x ∈ W ′
n and x ∈ V ′

m for some n,m. Without loss of
generality, say n ≤ m. Notice that by construction V ′

m could not possibly contain any points of W ′
n, yet it does.

(2) See Proposition 5.4 in Week 8 Notes.

(3) To do this, we shall use the converse of Lemma 1.15. Let A,B be disjoint closed sets in X. Define

f(x) =
d(x,A)

d(x,A) + d(x,B)
,

where d(x,A) = inf { d(x, a) : a ∈ A }. It is easy to see that f is continuous, and that f is 0 on A and 1 on B.

Lemma 1.15 (Urysohn’s). Let X be a normal topological space and A,B be disjoint closed sets in X. Then,
there exists a continuous function f : X → [0, 1] such that f is 0 on A and f is 1 on B.

Proof. We shall construct for each rational number r, an open set Ur. These sets will have the following properties:

1. Ur = ∅ if r < 0, Ur = X if r > 1;

2. U0 ⊇ A and U1 = X \B;

3. If p < q, then Up ⊆ Uq.

Let us first define U1 = X \B, and Ur for the cases in (1). To find U0, we apply Lemma 1.10 to find U0 such that
A ⊆ U0 and U0 ⊆ U1, since U1 contains A. Thus we have satisified condition (2).

At this point, it is unclear how we can get condition (3) out. What we would like to do; say r is a rational between p
and q; is to shove the set Ur between Up and Uq. We can do that due to normality: choose Ur such that Up ⊆ Ur and
Ur ⊆ Uq. If the rationals were well ordered in a way like the naturals, that would be easy. Unfortunately, reality is
often disappointing. However, we observe crucially that if we had a finite collection of rationals and sets with property
(3), we can do it quite easily. So instead we shall perform induction on a sequence containing all the rational numbers.
Let (ri)i∈N be a sequence that enumerates all the rational numbers in (0, 1) exactly once. By normality, there exists

1 SEPARATION AXIOMS 4



MAT327 Week 11 July 2024

Ur1 such that Ur1 ⊆ U1 and U0 ⊆ Ur1 . Now, let n ∈ N and suppose we have chosen sets Uri where i < n with the
property that whenever ri < rj , then Uri ⊆ Urj . Let p be the smallest rational number in the set { 0, r1, . . . , rn−1, 1 }
that is bigger than rn and q be the largest rational number from that set that is smaller than rn. We quickly remark
that this means q < rn < p. By the inductive hypothesis, Uq ⊆ Up. Normality implies that there is a open set Urn

such that Uq ⊆ Urn and Urn ⊆ Up.

Now, define
f(x) = inf { q ∈ Q : x ∈ Uq } .

This function is well defined, and attains values between 0 and 1 due to property 1. Property 2 tells us that it
is 0 on A and 1 on B. To show f is continuous, we shall show that preimages of subbasic elements are open, i.e.
f−1[(−∞, a)] and f−1[(a,∞)] are open. To begin, we make the following observations:

f(x) < a ⇐⇒ x ∈ Up for some p ∈ Q, p < a. (1)

f(x) ≤ a ⇐⇒ x ∈ Up for all p ∈ Q, p > a. (2)

The first one (Equation (1)) follows immediately by definition of inf. For Equation (2), if f(x) ≤ a, and r > a is a
rational, by definition of f , there is some rational s < r such that x ∈ Us ⊆ Ur ⊆ Ur. Now for the converse. Suppose
s > a is a rational, we show that f(x) ≤ s. Let us choose a rational r such that a < r < s. Then x ∈ Ur by hypothesis,
and Ur ⊆ Us, so this tells us that f(x) ≤ s. Since this holds for every rational bigger than a, we must have f(x) ≤ a.
Now, we thus have f−1[(−∞, a)] =

⋃
r∈Q,r<a Ur and f−1[(a,∞)] = X \

⋂
r∈Q,r>a Ur. Both of those are open, so f is

continuous.

The converse of Urysohn’s lemma is true: if disjoint closed sets can be separated with continuous functions, then the
space is normal.

2 Urysohn Metrization Theorem

Lemma 2.1. Let X be a T1 space and let { fα : α ∈ Λ } be a family of continuous functions from X into [0, 1] such
that for every x ∈ X and every neighborhood U of x, there is some α ∈ Λ such that fα(x) = 1 and fα|X\U = 0.
Then the map F : X → [0, 1]Λ (product topology) given by F (x) := ⟨fα(x) : α ∈ Λ⟩ is a topological embedding.

Proof. We first check injectivity. If x ̸= y, there are neighborhoods U of x and V of y such that y is not in U and x is
not in V . Thus there is some α such that fα(x) = 1 and fα is 0 on X \U , so in particular fα(y) = 0. So F (x) ̸= F (y).

Now, F is clearly continuous since every component of F is continuous2. Let us suppose U is open in X. Let x ∈ U ,
so that U is an open neighborhood of x. Thus there is some α such that fα(x) = 1 and fα is 0 on X \ U . Let
V = π−1

α [(0, 1]]. It remains to show that for every F (z) ∈ F [U ], there is a neighborhood of F (z) living in F [U ]. We
claim that F (z) ∈ F [X]∩ V ⊆ F [U ], so F [X]∩ V is our desired neighborhood. If F [y] ∈ F [X]∩ V then fα(y) > 0, so
y ∈ U , thus F (y) ∈ F [U ].

Corollary 2.2. The following are equivalent:

(1) X is completely regular;

(2) X is homeomorphic to a subspace of [0, 1]Λ for some Λ.

See [Mun00, Thm 34.3, p. 218].

Proof. Suppose X is completely regular. Then for each point x and neighborhood U of x, there is a continuous
function fx,U which is 1 on x and 0 on X \ U , which is a closed set. The collection of all these functions satisfy the
previous lemma. For the converse direction apply Proposition 1.11 (the closed unit interval is completely regular).

2This is the universal property of the product topology
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Theorem 2.3 (Urysohn Metrization Theorem). Let X be a regular second-countable space. Then X is metrizable.

Proof. Since X is regular and second-countable, it is normal by Proposition 1.14 (second countability implies Lindelof).
The idea here is to make the Λ in the previous lemma countable, then we would see that X is homeomorphic to a
subspace of a metrizable space. What we need is a countable family of functions that separate points from closed
sets. Let B = {Un : n ∈ N } be a countable basis of X. For every n,m such that Un ⊆ Um, using Lemma 1.15, choose
a function fn,m : X → [0, 1] such that fn,m is 1 on Un and it is 0 on X \ Um. Let us check that these functions
satisfy the property in the lemma. Suppose we have x and a neighborhood U of x. There is some basic Um such that
x ∈ Um ⊆ U . By regularity, there is some Un such that x ∈ Un ⊆ Um. Then fn,m is 1 on Un, and it is 0 on X \ Um,
so in particular it is 0 outside of U .

3 Stone-Čech Compactifications

We have previously constructed the Stone-Čech compactification of the naturals. Now we describe a different way to
construct it that does not involve ultrafilters.

Theorem 3.1 (Existence of Stone-Čech Compactification). Let X be a space. Then, the following are equivalent:

1. X is completely regular;

2. X is homeomorphic to a subspace of [0, 1]Λ for some Λ;

3. There is a compactification Y of X such that for every compact Hausdorff space K, every continuous
function f : X → K has a unique continuous extension g : Y → K.

Proof. Suppose X is completely regular. Let (fα)α∈Λ be all the continuous functions from X into [0, 1]. By the
imbedding lemma, the function F : X → [0, 1]Λ that sends a point x to ⟨fα(x) : α ∈ Λ⟩ is an imbedding. Let Y = F [X].
Then Y is compact Hausdorff since it is a closed subspace of a compact space. Moreover, it is a compactification since
X is dense in Y 3. Let f : X → [0, 1] be continuous, so there is some β such that f = fβ . Notice that πβ : Y → [0, 1]
is continuous, and πβ(F (x)) = fβ(x) = f(x). If there is another function g : Y → [0, 1] that extends f , notice that g

agrees with πβ on f [X], and so in particular it agrees with πβ on f [X] = Y . So g = πβ .

The situation of 3 is easily illustrated in the following commutative diagram:

X Y

K

F

f
∃!g

We shall denote the Stone-Čech compactification of a space X by βX. Note that any other construction of this
compactification is homeomorphic by universal property. Note additionally that we have only proven that any
continuous function from X to [0, 1] factors uniquely through βX. However, the general case easily follows from the
fact that K is compact Hausdorff if and only if it is homeomorphic to some closed space of [0, 1]Λ for some Λ.

Proposition 3.2 (Properties of Stone-Čech compactification). Let X be completely regular. Then:

1. βX is unique up to homeomorphism;

2. βX is projectively maximal;

3. If X is locally compact Hausdorff; then αX (one-point compactification) is projectively minimal.

Proof. For (1), suppose Y1, Y2 are both Stone-Čech compactifications of X, so they both satisfy the extension property.
Consider the following commutative diagrams.

3F [X] is a homeomorphic copy of X in Y

3 STONE-ČECH COMPACTIFICATIONS 6
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X Y2 X Y1

Y1 Y2

i2

i1
∃!ĩ1

i1

i2
∃!ĩ2

Then, we have the following situation.

X Y1

Y1

i1

i1
ĩ1◦ĩ2 Id

By uniqueness, it must be that ĩ1 ◦ ĩ2 = Id. The other situation follows similarly4.

For (2), we would like to show that if Y is any other compactification of X, then there is a continuous surjection
f : βX → Y such that

� X is fixed pointwise (i.e. the restriction onto X is the identity);

� The topology of Y is the quotient topology induced by f .

So we may interpret this as saying that any other compactification of Y is a quotient of βX. Suppose Y is a
compactification of X with the inclusion iY given. As usual, we apply the extension property. This immediately
yields a unique continuous f : βX → Y such that f ◦ iβX = iY .

βX

X Y

∃!f
iβX

iY

Observe that f [βX] = Y , since βX contains X and X is dense in Y . Additionally, f [βX] is closed, since βX is
compact and Y is Hausdorff. This shows that f is surjective. Let us now check that the topology on Y is indeed the
quotient topology. Recall that the quotient topology on Y has the property that U ⊆ Y is open if and only if f−1[U ]
is open. One direction is clear due to continuity. For the other direction, we shall consider closed sets. Let C ⊆ Y and
suppose that f−1[C] is closed in βX. It is thus compact. Applying f to this preimage, we note that f

[
f−1[C]

]
= C.

Since f−1[C] is compact the image under f of this set is compact, and thus closed in βX.

(3) Let Y be a compactification of X, let f : Y → αX be a surjection defined by the following:

f(y) =

{
x if x ∈ X,

∞ if y ∈ Y \X.

We need to show that the topology on αX is the quotient topology induced by f . It will suffice to show f is continuous
and apply the same argument as above, when we showed that Y has the quotient topology induced by f . There are 2
kinds of open sets: U ⊆ X (does not contain the point ∞) and U ⊆ αX (contains ∞). Suppose U ⊆ X is open, then
the preimage under f of U is just U ⊆ Y . Now by Lemma 3.3, U is open in Y . For the second kind, if U ⊆ αX, we
know that X \ U is compact. Now, f−1[U ] has compact complement in Y , thus it is open.

Lemma 3.3. If X is locally compact Hausdorff, then X is an open subset of any of its compactifications.

Proof. Let Y be a compactification of X. Let x ∈ X. We shall find a neighborhood of x contained in X. Since X is
locally compact Hausdorff, there is a neighborhood U of x, open in X such that U ⊆ X and U is compact5. Since
X is a subspace of Y , there is some V open in Y such that U = V ∩X. This V will be the desired neighborhood.
We claim that V ⊆ V ∩X. To see this, if b ∈ V and W is any neighborhood of b, there is some a ∈ X such that
a ∈ V ∩W as X is dense. So every neighborhood around b contains a point of X and V . Thus b ∈ V ∩X.

4We remark that this can be used in a more general setting to prove that universal properties characterize objects uniquely up to
isomorphism in any category.

5We won’t be needing the compactness, only the fact that the closure stays in X.
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Interestingly enough, βω is αω. More surprisingly, βω1 is αω1.
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