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1 Local compactness and one-point compactifications
Definition 1.1 (Local Compactness). A space X is locally compact at x ∈ X if there is a neighborhood U of x
and a compact set K containing U .

A space is locally compact if it is locally compact at every point.

Clearly every compact space is locally compact. We now exhibit some examples of spaces which are not compact, but
locally compact. We also exhibit examples of spaces that are not locally compact.
Example 1.2 (The real numbers). The real numbers are locally compact. Given x ∈ R, take an interval (x− ε, x+ ε)
around it and the closed interval [x− ε, x+ ε] contains this neighborhood. //
Example 1.3 (The rational numbers). The rational numbers are not locally compact everywhere. If Q was locally
compact, pick q ∈ Q, then there is a neighborhood U of q and compact subspace C such that q ∈ U ⊆ C. Now, U
contains some interval (q − ε, q + ε). Pick an irrational number in this interval. Then choose a sequence of rational
numbers converging to this irrational number1. The limit should be in C as C is closed, but the limit is irrational.

In fact, every closed interval [a, b]∩Q is seen to be not compact, since { (a− 1, i) : i irrational , a < i < b } is an open
cover of [a, b] ∩Q2 with no finite subcover. //

When the space X is Hausdorff, we can say a bit more.
Proposition 1.4 (Equivalent conditions for local compactness in Hausdorff spaces). Let X be Hausdorff. Then, the
following are equivalent:

1. X is locally compact at x;

2. There is a neighborhood V of x such that V is compact;

3. There is a local basis around x of open sets with compact closure.

Proof. It is immediate that 1 implies 2, since U ⊆ K as K is closed and contains U . Moreover, U is closed so it is
compact. For 2 implies 3, set Bx = {U ∩ V : U is a neighborhood of x } where V is given by (2). Then, U ∩ V ⊆ V ,
so the sets U ∩ V have compact closure. 3 immediately implies 1.

Example 1.5 (Discrete topology). Any space with the discrete topology is easily seen to be locally compact. //

Theorem 1.6 (Existence of one-point compactifications). Let X be a space. Then, the following are equivalent:

1. X is Hausdorff and locally compact;

2. There is a compact Hausdorff space Y and an embedding i : X → Y such that Y \ i[X] is a single point;

3. X is homeomorphic to an open subspace of a compact Hausdorff space.

Moreover, if there is another space Y ′ and embedding j that satisfies (2), then there is a unique homeomorphism
f : Y → Y ′ such that f ◦ i = j.a

aWarning: This is not a universal property.

See [Mun00, Thm 29.1, p. 181].

Proof. Suppose X is locally compact Hausdorff with topology τ . Let3 ∞ 6∈ X. Define Y = X ∪ {∞} and we shall
define a topology τ∞ on Y with the following properties:

• Everything that is open in X should be open in Y , i.e. τ ⊆ τ∞;

• We also add neighborhoods of ∞, they should be subsets U of Y such that X \ U is compact in X. Thus
neighborhoods of ∞ have compact complement in X.

Let us check that τ∞ is a topology. Notice ∅ ∈ τ∞ since it is open in X. We also have Y ∈ τ∞.
1If i is such an irrational, pick xn to be rational such that i < xn < i+ 1/n.
2We are covering it in R, since compactness is not relative.
3You can choose ∞ = X since X 6∈ X.
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If U, V ⊆ X then U ∩ V are open in X and so open in Y . If U, V are open neighborhoods of ∞ then we have
X \ U = KU , X \ V = KV being compact. Then we have X \ (U ∩ V ) = KU ∪KV which is compact. If U ⊆ X and
V an open neighborhood of ∞, then X \ V is compact. Then (X ∩ V ) ∩ U is open. Unions are left as an exercise.

For compactness, let U be an open cover of Y . Let U ∈ U be such that ∞ ∈ U . Then X \ U is compact and so it has
a finite subcover from U .

To see Y is Hausdorff, pick x, y ∈ Y . If both of x, y lie in X it is easy. If y = ∞, use the local compactness of X to
choose a neighborhood U of x with a compact subspace C containing U . Then Y \ C is a neighborhood of y = ∞
and it is disjoint from U .

2 implies 3 follows because the singleton ∞ is closed in Y .

For 3 implies 1, it is immediate that X is Hausdorff. Let x ∈ X. Then there is some open neighborhood U of x such
that U ⊆ X4. Then U is compact and contains U .

The uniqueness condition is easy.
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Figure 1: One point compactification of the reals. The reals are homeomorphic to (0, 1).

Remark 1.7. Notice that we can construct a one point compactification of a space that is not necessarily locally
compact or even Hausdorff.

Definition 1.8 (Compactification of Hausdorff space). A compactification of a Hausdorff space X is a compact
Hausdorff space Y such that X is dense in Y . If Y \ X is a single point, then Y is called the one-point
compactification of X, and it is denoted αX.

Although X may not actually be a subset of Y , we mean that there is an embedding i : X → Y . Also, Y \X really
means Y \ i[X].
Remark 1.9. Constructing a one compactification of X when X is already compact is uninteresting since it simply
adjoins an isolated point to X.
Remark 1.10. If X is locally compact Hausdorff and we have a construction Y that we claim to be the one point
compactification of X, it suffices to show that Y is compact Hausdorff, Y \X is a singleton, and X embeds into Y as
a dense subset. This is due to the uniqueness condition of Theorem 1.6.
Example 1.11 (One-point compactification of the naturals). It is claimed that αN is homeomorphic to { 1/n : n ∈ N }∪
{ 0 }. //
Example 1.12 (One-point compactification of the reals). From Figure 1, you can visualize αR as the circle. They
are homeomorphic. //
Example 1.13 (One-point compactification of ω1). This has been discussed in Problem set 3, Question 8, slightly. //

2 Other compactness notions
Recall that a limit point of a set A is a point p such that every neighborhood of p intersects A at some point other
than p.

4See [Lee11, Lem 4.65] or Question 4a in Problem Set 7
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Definition 2.1 (Limit point compactness). A space is limit point comapct if every infinite subset has a limit
point.

Definition 2.2 (Sequential compactness). A space is sequentially compact if every sequence has a convergent
subsequence.

Definition 2.3 (Countable compactness). A space is countably compact if every countable open cover of it has
a finite subcover.

Proposition 2.4 (Countable compactness and limit point compactness). If X is countably compact then it is limit
point compact. If X is a T1 space then the converse is true.

Proof. Suppose A ⊆ X is an infinite subset with no limit points. We may assume A is countable, since if A is
uncountable and has no limit points then no countable subset of A would have limit points. Then A is closed. For
each a ∈ A, there is some open neighborhood Ua ⊆ X such that Ua intersects A only at a. Let us cover the space X
with X \A, and the sets Ua. This is a countable cover, but it cannot have a finite subcover. If we remove a single Ua,
then we will not cover all of A.

Now suppose X is T1. Suppose that (Un)n∈N is a countable cover of N with no finite subcover. For each n ∈ N, let us
choose xn ∈ X \

⋃
j≤n Uj . Now we have an infinite set A = {xn }. If this was not infinite then there is some point we

had to choose infinitely often, call it xk. There is some open set Um that includes xk. Now let j > m be such that we
chose xk again. This is impossible. For x ∈ X, let Un be such that x ∈ Un. Then, Un ∩A has to be finite. As such,
the sequence (xn) does not have a convergent subsequence. Now, Un \ (A \ {x }) is an open neighborhood of x (we
are only removing finitely many points, and points are closed) and it contains no points of A. So A would have no
limit point.

Proposition 2.5 (Compactness implies limit point compactness). If X is compact then it is limit point compact.

Proof. See Munkres.

Example 2.6 (Limit point compact but not countably compact). The following construction is called the divisor
topology. Let X = {n ∈ N : n ≥ 2 } and declare a basis on X of open sets Un = {x ∈ N : x divides n } for n ≥ 2.
This is a basis because if Un intersects Um at some x, then x divides both n and m so it divides their gcd. Thus
Ugcd(n,m) will be contained in Un ∩ Um. This is not countably compact, but it is limit point compact. The basis we
declared covers X, but each Un is finite and as such a finite number of them cannot cover X. However, it is limit
point compact. Let A ⊆ X be infinite, so we have 2 different elements in A, say m,n ∈ A. //
Example 2.7 (Compact but not sequentially compact). The stone-cech compactification of the naturals, βN, is
compact but the only sequences that converge are eventually constant. Thus, it is not sequentially compact, since we
can easily pick a sequence which has no subsequences that are eventually constant. //
Example 2.8 (Limit point compact but not compact). The first uncountable ordinal, ω1, is not compact. We can
cover it with initial segments by U = { [0, β) : β ∈ ω1 }. Each initial segment is countable and we cannot extract any
finite subcover, since any finite union of countable sets is countable. (This also shows it is not Lindeloff). It is however
limit point compact. Let A ⊆ ω1 be countable, so that A is bounded5. Then A ⊆ [0, β] where β is a bound for A,
and [0, β] is compact so A has a limit point in that closed interval which is compact. Then this limit point is also a
limit point of A in ω1. //

The previous example also goes to show that ω1 is sequentially compact, but not compact.
Proposition 2.9 (Equivalence of compactness notions for metric spaces). For metric spaces, compactness, limit
point compactness and sequential compactness are equivalent.

3 Countability axioms
Definition 3.1 (First and second countability). A topological space X is first-countable if every point has a
countable local basis. It is second-countable if there is a countable basis of X.

5See problem set 2
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Recall that a space is sequential if given A ⊆ X, and x ∈ A, there is a sequence (xn)n∈N ⊆ A such that xn → x.
Proposition 3.2 (First countable implies sequential). Let X be first-countable. Then, X is sequential.

Proof. Suppose x ∈ A. If {Un } is a local basis at x, then pick xn ∈ A ∩
⋂n

1 Ui.

Proposition 3.3 (Metric spaces are first countable). If X is metrizable, then X is first countable

Proof. Choose balls of radius 1/n at each point x.

Example 3.4 (The real numbers). The real numbers are easily seen to be second countable by taking the basis
B = { (p, q) : p < q, p, q ∈ Q }. //
Proposition 3.5 (Restrictions on the cardinality of discrete subspaces). If X is second countable and A ⊆ X is
discrete, then A is countable.

Proof. If A is discrete, we can put a basis element Ua around each point a ∈ A that intersects A only at { a }, so we
have a collection of distinct basis elements of at least the cardinality6 of A.

Example 3.6 (Uniform topology). The space Rω with the uniform topology is first countable but not second countable.
It contains the subspace { 0, 1 }ω, the set of binary seqeunces, which is a discrete subspace. By Proposition 3.7, the
uniform topology on Rω cannot be second countable. //
Proposition 3.7 (Implications of second countability). Let X be a second countable space. Then, the following are
true:

1. X is first countable;

2. X satisifies the Lindelof property: Every open cover of X has a countable subcover;

3. X is separable7: There is a countable dense subset of X.

4. X has the countable chain condition (ccc): Any collection of pairwise disjoint open subsets of X is countable.

Proof. 1 is immediate by choosing a local basis of x to be the elements of the countable basis of X that contain x.

2 is an exercise

For 3, let B be a countable basis of X and pick8 a x ∈ U ∈ B (for each U that is nonempty in B). Then let D be the
collection of all these points we picked. It is clear that D intersects every open set so it is dense.

4 follows by observing that you can extract a pairwise disjoint collection of basis elements from a pairwise disjoint
collection of open subsets. Alternatively, you can deduce 4 from 3 by picking an element of the dense set from each
open subset in the collection.

Note none of these implications can be reversed, except for metric spaces.
Remark 3.8. Even with all 3 conditions being satisified, X may still fail to be second countable. See [Mun00,
Example 3, p. 192].
Example 3.9. Endow R with the cocountable topology. Then this topolgy is Lindelof and has CCC, but it is not
second countable. //
Example 3.10. Let X = R2

l be the Sorgenfrey plane. Then it has a countable dense subset, namely Q2. A basic
open set looks like [a, b) × [c, d) so you can easily find a point with both rational coordinates.9 It is not Lindelof
because we can find an uncountable discrete subspace. We will use the strategy of Proposition 2.4. Namely, let L be
the line generated by y = −x. For each point p ∈ L let Up be a basic open set that intersects L only at p. Then cover
the Sorgenfrey plane with the complement of L and the Up’s. No countable subcover can exist, since if we remove any
of the Up’s we will not cover a point in the line. //

Note that Rl is actually Lindelof.
Example 3.11. Let αω1 be the one point compactification of ω1. Then it is Lindelof since it is compact. It does not
have CCC, since for every γ ∈ αω1 that has an immediate predecessor, { γ } is open. There are uncountably many γ
with an immediate predecessor. It is also not separable. //

6In particular, the map a 7→ Ua from A into the basis of X is injective.
7This name is quite bad, since it really has nothing to do with separations and connectedness.
8The axiom of countable choice will suffice
9Recall that an equivalent condition for a set being dense is that every nonempty open set intersects it.
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Proposition 3.12 (Equivalence of countability axioms for metric spaces). For metrizable spaces, second countability,
possessing the Lindeloff property and separability are equivalent.

3 COUNTABILITY AXIOMS 6
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