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Chapter 1

Some prerequisite material

We will quickly remark that the prerequisite chapter is not fully complete.

1.1 Notation

We shall try to be as clear about the type of our variables as much as possible. In particular, vectors will be in bold:
v ∈ Rn.

1.2 Linear algebra

We shall assume that the reader knows a little bit of linear algebra. Here, we will not bold any of our vectors, since
they are all vectors.

Definition 1.2.1 (Inner Product). Let V be a vector space over R or C. Then an inner product on V is a map
⟨·, ·⟩ : V × V → C such that

1. (Linear in the 2nd argument) ⟨u, λv + w⟩ = λ⟨u, v⟩+ ⟨u,w⟩,
2. (Conjugate symmetric) ⟨u, v⟩ = ⟨v, u⟩,
3. (Positive definiteness) ⟨v, v⟩ ≥ 0 and ⟨v, v⟩ = 0 if and only if v = 0.

A few quick remarks are in order. The third property of an inner product tells us that ⟨v, v⟩ must be a real number,
so comparison with 0 is a legal move. In addition, if V is a real vector space, conjugate symmetry is simply symmetry,
i.e. ⟨u, v⟩ = ⟨v, u⟩ since r = r whenever r is a real number. Thus, any inner product on a real vector space will also be
linear in the first argument. In either case, linearity of the second argument allows us to define linear transformations
like φv(w) = ⟨v, w⟩ where v ∈ V is some fixed vector. We shall see that this is used later on in Theorem 1.2.5, and
even in the discussion after Equation (2.2).

We shall really only be working with one kind of inner product, the usual inner product on Rn. This is defined to be

⟨u, v⟩ =
n∑

i=1

uivi = u1v1 + u2v2 + · · ·+ unvn (1.1)

Given an inner product, we can define a norm. Again, we are mostly only interested in the Euclidean norm on Rn,
which is defined by

∥v∥ =
√

⟨v, v⟩ =

√√√√ n∑
i=1

vivi. (1.2)

Here, ⟨v, v⟩ is taking the usual inner product of v with itself.

CHAPTER 1. SOME PREREQUISITE MATERIAL 4
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Proposition 1.2.2 (Cauchy-Schwarz Inequality). Let V be an inner product space with induced norm. Then, for any
vectors u, v ∈ V ,

|⟨u, v⟩| ≤ ∥u∥∥v∥,
with equality if and only if u is a scalar multiple of v (or vice versa).

Proof. See linear algebra done right

This is a useful proposition which is used in a lot of bounding arguments. See [Spi18, Problem 1-1 on p. 4] for the
problem.
Proposition 1.2.3. Let ∥·∥ be the usual Euclidean norm. Then for any x ∈ Rn we have

∥x∥ ≤
n∑

i=1

|xi|,

where xi is the ith coordinate of x.

Proof. Let { e1, . . . , en } be the standard basis of Rn. So if x ∈ Rn, we have x =
∑n

1 ciei. Observe that ci is precisely
the ith coordinate of x. Thus,

∥x∥ =

∥∥∥∥∥
n∑
1

ciei

∥∥∥∥∥
≤

n∑
1

|ci|∥ei∥

=

n∑
1

|ci|.

This proposition will come in handy quite often when proving results later on, so we state it here. See [Spi18, Problem
1-10 on p. 5] for the original exercise.
Proposition 1.2.4. Suppose T : Rm → Rn is linear. Then, there exists M ∈ R such that ∥T (h)∥ ≤ M∥h∥ for all
h ∈ Rm.

Proof. Let { v1, . . . , vm } be a basis of Rm, so if v ∈ Rm, then v =
∑m

1 aivi. Then,

∥T (v)∥ =

∥∥∥∥∥T
(

m∑
1

aivi

)∥∥∥∥∥
≤

m∑
1

∥T (aivi)∥

=

m∑
1

|ai|∥T (vi)∥.

Notice that the last line looks suspiciously like a dot product. Indeed, it is. Let x = (|a1|, . . . , |am|) and y =
(∥T (v1)∥, . . . , ∥T (vm)∥). Then, by Cauchy-Schwarz, we have

⟨x, y⟩ = |⟨x, y⟩| ≤ ∥x∥∥y∥.

So choose M = ∥y∥. Then the result follows.

We may also use the Riesz Representation Theorem. For now, the weaker version will suffice. You can see [Spi18,
Problem 1-12 on p. 5] for the original problem.

CHAPTER 1. SOME PREREQUISITE MATERIAL 5



Robert Notes on multivariable calculus June 2024

Theorem 1.2.5 (Weak Riesz Representation Theorem). Let V be a real inner product space of dimension n and
let V ∗ denote the dual space of V . This is the set of linear functionals φ : V → R. Now, for each v ∈ V , define
φv(w) = ⟨v, w⟩, and define F : V → V ∗ by F (v) = φv. Then F is an isomorphism.

1.3 Topology

We shall only briefly touch on topology. For now, the definitions will be introduced in a less general manner. Readers
who do know topology can gloss over this section.

Definition 1.3.1 (Ball). Let x ∈ Rn and ε > 0. Then a ball around x of radius εa is the set

B(x, ε) := {y ∈ Rn : ∥y − ∥x∥∥ < ε } . (1.3)

aSometimes you will see this being called an open ball.

When n = 1, balls are simply open intervals. When n = 2 they can be seen as circles and when n = 3 they can be
seen as spheres.

Definition 1.3.2 (Open set). Let U ⊆ Rn. Then the set U is called open if for every point x ∈ U , there exists
some ε > 0 such that B(x, ε) ⊆ U .

It is immediate from the definition that every ball is an open set. Additionally, with a little set theory one can prove
that every open set is the union of balls.

Definition 1.3.3 (Neighborhoods). Let x ∈ Rn. A neighborhood of x is an open set U ⊆ Rn such that x ∈ U .

Definition 1.3.4 (Open covers). Let S ⊆ Rn. An open cover of S is a collection of open sets O = {Oα : α ∈ Λ }
(here Λ is some indexing set, so we can refer to each element in O by writing Oα) such that the union⋃

O =
⋃

α∈Λ Oα contains S, i.e. ⋃
α∈Λ

Oα ⊇ S.

If there are finitely many indices α1, . . . , αn such that
⋃n

i=1 Oαi ⊇ S, then O is said to have a finite subcover .

This definition is a little hard to get your head around so let us see a few examples.
Example 1.3.5. We can open cover R with open intervals of the form (n, n+ 1), for each n ∈ Z. //

Definition 1.3.6 (Compactness - General definition). Let S ⊆ Rn. Then S is said to be compact if given any
collection of open sets O = {Oα : α ∈ Λ }, there is a finite subcover of S.

Definition 1.3.7 (Compactness - Rn definition). Let S ⊆ Rn. Then S is said to be compact if it is closed and
bounded.

Note that the equivalence of those two definitions in Rn is justified by the following theorem.

Theorem 1.3.8 (Heine-Borel). Let S ⊆ Rn. Then S is compact (in the sense of Definition 1.3.6) if and only if it
is closed and bounded.

Proof. Much shorter with topology, and thus omitted.

CHAPTER 1. SOME PREREQUISITE MATERIAL 6
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You are free to use any definition of compactness that is convenient. The following property of compactness is
extremely useful.
Proposition 1.3.9. Let S ⊆ Rn be compact. Let f : S → Rn be continuous. Then, the image of S under f , f [S], is
also compact.

And as a corollary, we get for free, the
Corollary 1.3.10 (Extreme Value Theorem). Let S ⊆ Rn be compact and f : S → R be continuous. Then, f attains
a maximum and minimum, i.e. there exists m,M ∈ R such that for all s ∈ S, m ≤ f(s) ≤ M .

CHAPTER 1. SOME PREREQUISITE MATERIAL 7



Chapter 2

Differentiation

2.1 Derivatives

We immediately begin with the most general definition of the derivative. The derivative, in essence, is trying to
capture the idea of a linear approximation to a function at a point.

Definition 2.1.1 (Derivative). Let f : Rn → Rm and a ∈ Rn Then f is said to be differentiable at a if there
exists a linear transformation λ : Rn → Rm such that

lim
h→0

∥f(a+ h)− f(a)− λ(h)∥
∥h∥ = 0. (2.1)

The linear transformation is often denoted Df(a).

Warning: This notation can get a little confusing! If we do Df(a)(v), we are saying evaluate the linear transformation
Df(a) at v. For less confusion, the reader can insert brackets like (Df(a))(v). However, this notation is worth the
initial confusion because we will soon see that Df itself can be a function.

When we refer to the matrix of the derivative of f at a, i.e. M(Df(a)), it is called the Jacobian of f at a. This is
denoted f ′(a) in [Spi18].

Of course, the codomain of f need not be all of Rn, just some open subset of it. When we have f : Rn → R, we
define

Definition 2.1.2 (Gradient). Let f : Rn → R. Then the gradient of f at a, denoted ∇f(a) is a vector in Rn

such that

lim
h→0

∥f(a+ h)− f(a)−∇f(a) · h∥
∥h∥ = 0. (2.2)

It is not too hard to see that the gradient is really just a special case of the derivative. In this case, the linear
transformation λ is actually given by λ(h) = ∇f(a) · h. We can appeal to Theorem 1.2.5.

Of course, the derivative is unique.

Theorem 2.1.3 (Uniqueness of derivative). Suppose f : Rn → Rm is differentiable. Then, there is a unique linear
transformation λ : Rn → Rm that makes Equation (2.1) hold.

We shall refer the reader to [Spi18] for a proof for now, until I update these notes again.

8



Robert Notes on multivariable calculus June 2024

2.2 Consequences of differentiability

Recall that in single variable calculus, if f : R → R is differentiable at c, then it is also continuous at c. The same is
true in in multivariable calculus
Proposition 2.2.1. Let f : Rn → Rm be differentiable at a ∈ Rn. Then f is continuous at a.

Proof. Suppose f is differentiable at a. Let ε > 0, and we would like to find a δ > 0 such that if 0 < ∥x− a∥ < δ, we
have ∥f(x)− f(a)∥ < ε. Since f is differentiable at a, there exists a linear transformation λ such that

lim
h→0

∥f(a+ h)− f(a)− λ(h)∥
∥h∥ = 0.

By definition of the limit, we have some δ > 0 such that when 0 < ∥h∥ < δ,

∥f(a+ h)− f(a)− λ(h)∥
∥h∥ < ε.1

Now, if we take x such that 0 < ∥x− a∥ < δ, we will have

∥f(a+ (x− a))− f(a)− λ(x− a)∥
∥x− a∥ < ε.

2.3 The chain rule

Theorem 2.3.1 (Chain rule). Let f : Rn → Rm be differentiable at a ∈ Rn and g : Rm → Rp be differentiable at
f(a). Then g ◦ f : Rm → Rp is differentiable at a and we have

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a). (2.3)

Proof. To be done

In [Spi18, Theorem 2-2 in p. 19], Equation (2.3) can seem a little confusing. Let us try to explain what is going on
here. First of all, we use composition because Dg(f(a)) and Df(a) are linear transformations. Next, what is the
equation saying in English? Well, what we are really saying here is that the derivative of the composition g ◦ f at a is
nothing but the derivative of g at the point f(a) composed with the derivative of f at a. To make this less confusing,
let µ = Dg(f(a)) and λ = Df(a). Then, if we evaluate D(g ◦ f)(a)(v), we get µ(λ(v)).

Some other useful propositions regarding differentiability are listed below. Note that if we do not quantify over a, it
is any vector in Rn.

1We remark that no absolute value signs are needed since the norm is always positive.
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Theorem 2.3.2 (Useful properties of differentiation). 1. Suppose f : Rn → Rm is a constant function (that is,
there is some y ∈ Rm such that f(x) = y for all x ∈ Rn). Then,

Df(a) = 0

(Note here that 0 refers to the linear transformation which is always 0.)

2. Suppose f : Rm → Rm is a linear transformation. Then,

Df(a) = f.

This is to say, the best linear approximation of a linear transformation is itself (unsurprisingly).

3. Let f : Rm → Rm. Then f is differentiable at a ∈ Rn if and only if each component function of f ,
fi : Rn → R (i = 1, . . . ,m) is differentiable at a. Additionally, we have

Df(a) = (Df1(a), . . . , Dfm(a)).

4. If s : R2 → R is defined by s(x, y) = x+ y then Ds((a, b)) = s

5. If p : R2 → R is defined by p(x, y) = xy then

Dp((a, b))(x, y) = bx+ ay.

This means that ∇p((a, b)) = (b, a).

Proof. (1) and (2) follow quickly from the definition of the derivative.

(3) First suppose that f is differentiable at a ∈ Rn. Recall that the projection functions πi are linear and thus are
differentiable everywhere. By (2) we have Dπi(f(a)) = πi. By Theorem 2.3.1 we have fi = πi ◦ f being differentiable
at f(a). Now let us suppose that each component function of f is differentiable at a. Let λ = (Df1(a), . . . , Dfn(a)).
To make this easier to think about, λ has a matrix given by

M(λ) =


∇f1(a)
∇f2(a)

...
∇fn(a)

 ,

where each row of M(λ) is given by the vector ∇f1(a). Now, we can write

f(a+ h)− f(a)− λ(h) = (f1(a+ h)− fi(a)−Df1(a)(h), . . . , fn(a+ h)− fn(a)−Dfn(a)(h)).

Now, let’s take a look at ∥f(a+ h)− f(a)− λ(h)∥. By Proposition 1.2.3 we have

∥f(a+ h)− f(a)− λ(h)∥ ≤
n∑

i=1

|fi(a+ h)− fi(a)−Dfi(a)(h)|.

This implies that

∥f(a+ h)− f(a)− λ(h)∥
∥h∥ ≤

n∑
i=1

|fi(a+ h)− fi(a)−Dfi(a)(h)|
∥h∥ .

Taking the limit h → 0 on both sides, the right side is 0 and thus the left side must be 0 too.

(4) follows from (2) as s is easily seen to be linear.

(5) To be done. See [Spi18, Theorem 2-3 on p. 21].

Corollary 2.3.3. Suppose f, g : Rn → R are differentiable at a. Then,

D(f + g)(a) = Df(a) +Dg(a),

D(f · g)(a) = g(a)Df(a) + f(a)Dg(a).
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If g(a) ̸= 0 then we also have

D(f/g)(a) =
g(a)Df(a)− f(a)Dg(a)

(g(a)2)
.

Proof. To be done

Note here f + g is a function defined by (f + g)(x) = f(x) + g(x). The sum on the right side is actually a sum of
vectors. Additionally, f · g is a function defined by (f · g)(x) = f(x)g(x). Keep in mind that f(a), g(a) are scalars.

A very useful thing to note is that the determinant function is actually differentiable. The following propositions from
[Spi18, Problem 2-14, 2-15 on pp. 23, 24] can be used to deduce this fact.
Proposition 2.3.4. Let Ei, i = 1, . . . , k be Euclidean spaces of various dimensions. That is to say, Ei = Rni for
some ni. A function f : E1 × · · · ×Ek → Rp is multilinear if for each xj ∈ Ej , where j ̸= i, the function g : Ei → Rp

defined by g(v) = f(x1, . . . ,xi−1,v,xi+1, . . . ,xk) is linear.

Suppose f is multilinear, and i ̸= j. Then if h = (h1, . . . ,hk) where hl ∈ El,

lim
h→0

∥f(a1, . . . ,hi, . . . ,hj , . . . ,ak)∥
∥h∥ = 0.

Additionally, we have

Df(a1, . . . ,ak)(x1, . . . ,xk) =

k∑
i=1

f(a1, . . . ,ai−1,xi,ai+1, . . . ,ak).

Proof. To be done

Proposition 2.3.5. Let M be an n× n matrix. Treat M as an element of Rn × · · · ×Rn by considering each row of
M as an element of Rn. Then, the determinant function det : Rn × · · · × Rn → R is differentiable and we have

D(det)(r1, . . . , rn)(x1, . . . ,xn) =

n∑
i=1

det



r1
...
xi

...
rn

 .

Here, we have xi in the ith row and everywhere else remains rj when j ̸= i.

Proof. The determinant function is multilinear, now apply the previous proposition.

2.4 Multivariable MVT

Let us first begin by recalling the mean value theorem from single variable calculus.

Theorem 2.4.1 (Mean Value Theorem). Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b).
Then, there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

We omit the proof as this is a single variable calculus result.
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Theorem 2.4.2 (Multivar MVT). Let U ⊆ Rn and let a,b ∈ U be such that the graph of the function γ : [0, 1] → Rn

defined by γ(t) = (1 − t)a + tb has γ(t) ∈ U for all t ∈ [0, 1]. If f : U → R is differentiable on U and f ◦ γ
satisifes the hypothesis of Theorem 2.4.1, then there exists t0 ∈ (0, 1) such that c = γ(t0) and we have

f(b)− f(a) = ∇f(c) ◦ (b− a).

Proof. Not too hard, just apply Theorem 2.3.1 and Theorem 2.4.1.

Note that we do we need that the codomain of f to be R. The next example shows this. See [Zam24, Example 4.2.3,
p. 226]
Example 2.4.3. Let f : R → R2 be defined by f(t) = (cos t, sin t). Then f(0) = (1, 0) and f(π) = (−1, 0) but there is
no c ∈ (0, π) such that f(π)−f(0) = Df(c) ·(π−0). This is because the equation means that (−2, 0) = π(− sin c, cos c).
But if cos c = 0 then −π sin c is ±1. //
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2.5 Partial derivatives

Definition 2.5.1 (Partial derivative). Let f : Rn → R and a ∈ Rn. The i-th partial derivative of f at a is the
limit

lim
h→0

f(a1, . . . , ai + h, . . . , an)− f(a1, . . . , an)

h
, (2.4)

if it exists. We will denote this limit with ∂if(a), or Dif(a).

The partial derivative is actually the usual single-variable calculus derivative of a certain function. The reader has
probably observed that if we define a function g : R → R by g(x) = f(a1, . . . , ai−1, x, ai+1, an) then Dif(a) = g′(ai).

Partial derivatives are usually quite easy to calculuate. For example, if we let f(x, y) = x2y + 4y then we have
D1f(x0, y0) = 2x0y0 and D2f(x0, y0) = x2

0 + 4.

The reader will wonder how does the derivative interact with partial derivatives.

Theorem 2.5.2 (Components of gradient). Let f : Rn → R and suppose f is differentiable at a. Then, we have

∇f(a) = (∂1f(a), ∂2f(a), . . . ∂nf(a)).

Proof. To be done

If we combine Theorem 2.5.2 and part (3) of Theorem 2.3.2, we can obtain the following
Corollary 2.5.3. Let f : Rn → Rm and suppose f is differentiable at a. Then, we have

M(Df(a)) =


∇f1(a)
∇f2(a)

...
∇fm(a)

 =


∂1f1(a) · · · ∂nf1(a)
∂1f2(a) · · · ∂nf2(a)

...
. . .

...
∂1fm(a) · · · ∂nfm(a)


Additionally, we may wonder whether the existence of partial derivatives implies the existence of the derivative. This
is not true.
Example 2.5.4. Let

f(x, y) =

{
xy

x2+y2 , if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0).

f is certainly not continuous at (0, 0) and thus is not differentiable at (0, 0). However, it does have partial derivatives
at (0, 0). //

Theorem 2.5.5 (Continuous partials implies differentiable). Suppose f : Rn → R and we have an open set U that
contains a, and for all x ∈ U , for all i, Dif(x) exists, and the function Dif which is x 7→ Dif(x) is continuous
at a. Then Df(a) exists.

If f satisifes the hypothesis of theorem above, it is called continuously differentiable at a. Such a function is also
called a C1 function.

Proof. To be done

This theorem can be easily generalized for f : Rn → Rm.

Definition 2.5.6 (Class C1 function). Let A ⊆ Rn and f : A → Rm, and let a be a point in the interior of A.
Then f is continuously differentiable at a or f ∈ C1 at a if for all i ∈ { 1, . . . , n }, ∂if is defined on some
neighborhood of a and is continuous at a.
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2.5.1 Higher-order partial derivatives

Let f : Rn → R and fix some i ∈ { 1, . . . , n }. If the partial derivative of f exists everywhere (i.e. Dif(x) exists for all
x ∈ Rn), then we have a function Dif : Rn → R which maps a vector to the i-th partial derivative at that vector, i.e.

Dif : Rn → R
x 7→ Dif(x).

One might want to take the partial derivatives of the function Dif . For example, the j-th partial derivative of Dif
at x would be Dj(Dif)(x). It is very possible that Dj(Dif)(x) exists for all x ∈ Rn too, in this case we obtain a
function

Dj(Dif) : Rn → R
x 7→ Dj(Dif)(x).

This function is called a second-order (mixed) partial derivative of f . It’s not too hard to define higher order
partial derivatives. In [Spi18] this function is denoted Di,jf(x). This notation does reverse the order of i and j, but
it turns out that for most functions, this does not matter. See Theorem 2.5.7.

Theorem 2.5.7 (Clairut’s Theorem). Let f : Rn → Rm and let i, j ∈ { 1, . . . , n }. Suppose Dfj(Dfi) and Dfi(Dfj)
are continuous in some open set that contains a. Then, Dfj(Dfi)(a) = Dfi(Dfj)(a).

Proof. To be done.

Note that the converse of this false. The next example taken from [Spi18, Problem 2-24 on p. 29] is a counterexample
to the converse of Theorem 2.5.7.
Example 2.5.8. Let f : R2 → R be defined by

f(x, y) =

{
xy x2−y2

x2+y2 (x, y) ̸= (0, 0),

0 (x, y) = (0, 0).

We leave it to the reader show that D2f(x, 0) = x for all x, and D1f(0, y) = −y for all y. (Apply the definition of
partial derivative). Then D1,2f(0, 0) ̸= D2,1f(0, 0). //

Let f : Rn → Rm. If f is differentiable everywhere and has continuous partial derivatives, we say that f is C1. Such
a function f satisifes the hypothesis of Theorem 2.5.7.

Theorem 2.5.9. Let A ⊆ Rn. If the maximum or minimum of f : A → R occurs at a point a in the interior of A
and Dif(a) exists, then Dif(a) = 0.

Proof. Define gi : R → R by gi(x) = f(a1, . . . , ai−1, x, ai+1, . . . , an). Then gi has a maximum or minimum at ai as f
has a maximum or minimum at a. Now, since a is in the interior of A, there is some open ball that contains a and thus
there is some open interval of ai which gi is defined on. gi is also differentiable because g′i(ai) = Dif(a)

2. By single
variable calculus, we know that g′i(ai) = 0 as g(ai) is the maximum or minimum. Now, Dif(a) = g′i(ai) = 0.

As an immediate corollary, we get the following:
Corollary 2.5.10. If f : A ⊆ Rn → R is differentiable at a and a is in the interior of A, then ∇f(a) = 0.

2Technically this justification is very handwavey. However it’s not too hard to repair this, so we’ll do it at a later time.
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2.6 Directional derivatives

Definition 2.6.1 (Directional derivative). Let f : Rn → R. The directional derivative of f at a in direction u
is defined to be

lim
t→0

f(a+ tx)− f(a)

t
,

if the limit exists. We denote this limit as Duf(a).

While this definition does not impose any conditions on the direction vector u, we usually ask for it to be a unit vector
to make life easier. An immediate consequence of this definition is that the i-th partial derivative of f at a can be
thought of as the directional derivative of f at a in the direction ei, where ei is the i-th standard basis vector of Rn.
Proposition 2.6.2. If ∂if(a) exists then ∂if(a) = Dei

f(a).

Proof. Apply the definition.

Again, the reader may wonder whether the existence of directional derivatives tells us anything about the derivative.
It turns out that this is not true, even if every single directional derivative exists. The following example comes from
[Spi18, Prob 1-26 on p. 13, Prob 2-31 on p. 33].
Example 2.6.3. Let A = { (x, y) ∈ R2 : x > 0 and 0 < y < x2 }. To see this set better, view the plot of this set.

Let f : R2 → R be defined by

f(x, y) =

{
0 if x ̸∈ A,

1 if x ∈ A.

For any h ∈ R2 we define gh : R → R by gh(t) = f(th). Then gh is continuous at 0, but f is not continuous at (0, 0).
To see this, notice that gh is a function that defines a line passing through the origin. Thus, there is some open
interval around 0, call it I, such that if t ∈ I, we have th ̸∈ A. //
Example 2.6.4. Let n ≥ 1 and let f : R2 → R be defined by

f(x, y) =

{
xny

xn+1+y2 (x, y) ̸= (0, 0)

0 (x, y) = (0, 0)
.

Then f is not continuous at 0. To see this, approach along y = xn. Approaching along this path leads to the limit at
0 being 1.

We do have every directional derivative though. //

2.7 Optimization

Let us first extend the definition of maximum and minimum points to Rn.

Definition 2.7.1 (Local extrema). Let f : Rn → R. Then if there is a neighborhood U of a such that for all
x ∈ U , we have f(x) ≤ f(a), then a is called a local maximum . If it is the case that for all x ∈ U we have
f(x) ≥ f(a), then a is called a local minimum .

Points which are local maximum or minimum points are called local extrema.

Definition 2.7.2 (Critical point). Let f : Rn → R be differentiable. Then c ∈ Rn is a critical point if ∇f(c) = 0
or ∇f(c) does not exist. Additionally, the value f(c) is called a critical value.

Note that if the domain of f is changed to be some subset of Rn, we will require that c be an interior point (otherwise
we cannot discuss ∇f(c)).
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Theorem 2.7.3 (Local EVT). Let A ⊆ Rn and f : A → R. If a is in the interior of A and a is a local extremum
then ∇f(a) = 0 or it does not exist.

Proof. This actually follows as a corollary to Theorem 2.5.9. If a is a local extremum then it is either a maximum or
minimum, so all ∂if(a) are zero. Thus if ∇f(a) exists then we must have ∇f(a) = 0.

As a consequence we note that if a is a local extremum then it is either a boundary point or a critical point.

As an example of ∇f being undefined at a critical point, we may consider the following [Zam24, Example 4.3.13,
p. 234].
Example 2.7.4. Define f : Rn → R by f(x) = ∥x∥. Then, ∇f(x) = x

∥x∥ . So ∇f is not defined at the origin, but

the origin of f is a critical point of f . Observe that ∇f(x) is not 0 if x is not zero, so f has no local extremum on
Rn \ {0 }. Therefore the only possible local minimum of f is at 0. It is also the local minimum of f . //

Definition 2.7.5 (Saddle point). Let A ⊆ Rn and f : A → R. Then, a is a saddle point if it is an interior point
of A, ∇f(a) = 0 and a is not a local extremum.

Theorem 2.7.6 (Lagrange Multipliers). Let f,G : Rn → R be C1 functions. Let S = G−1(()0). If the restriction
of f to S, f : S → R has a maximum or minimum at c ∈ S and ∇G(c) ̸= 0, then there exists λ ∈ R such that

∇f(c) = λ∇G(c).

1. Find out whether global extrema exist. Usually this involves checking if the image of the function is compact.

2. Finding the critical points on the interior. This involves calculating the gradient of the function.

3. Checking the boundary for extrema. Usually you can parameterize the boundary. Compose the parameterization
with the original function to obtain a single variable function which you can optimize using single variable
calculus techniques.

2.8 Tangent vectors

Definition 2.8.1 (Tangent Vector). Let S ⊆ Rn and p ∈ S. Then v is a tangent vector of S at p if there is an
open interval I ⊆ R containing 0 and a function γ : I → S such that γ(0) = p and γ′(0) = v.

Note that we technically do not need that the open interval contains 0, as any open interval whatsoever is diffeomorphic
to an open interval containing 0. Additionally, the condition on the codomain of γ can be changed to γ : I → Rn and
γ(I) ⊆ S.

Definition 2.8.2 (Tangent space). The set of all tangent vectors of S at p is called tangent space of S at p. It
is denoted TpS.

Example 2.8.3. Let f(x, y) = 9− x2 − y2 and let S = { (x, y, f(x, y)) : x, y ∈ R } = Γ(f). //

Definition 2.8.4 (Tangent plane). The tangent plane of S at p is denoted p+ TpS.

p+ TpS = {p+ v : v ∈ TpS } .

If S is a graph of some C1 function the tangent space is a vector space and is easy to calculate.
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Theorem 2.8.5. Let V ⊆ Rk be an open set and F : V → Rn−k be a C1 function. Let S = Γ(F ), that is

S = { (v, F (v)) ∈ Rk × Rn−k : v ∈ V } .

Then for any a ∈ V,p = (a, F (a)) ∈ S, the tangent space of S at p satisifies

TpS = { (w, DaF (w)) ∈ Rk × Rn−k : w ∈ Rk } .

Thus TpS is a k-dimensional vector space spanned by { (ei, ∂iF (a)) } where i ∈ { 1, . . . , k } and ei are the
standard basis vectors of Rk.

2.9 Smooth Manifolds

Definition 2.9.1 (Smooth Manifold at a point p). Let S ⊆ Rn and p ∈ Rn. Then S is a k-dimensional smooth
manifold at p if there is an open neighborhood of p and a C1 function f : V → Rn where V is open such that
S ∩ U is the graph of f .

Example 2.9.2 (The circle). Let S1 = {x ∈ R2 : ∥x∥ = 1 } be the unit circle. Then S1 is a smooth manifold at any
point. We leave the reader to verify this fact. Notice that points (x, y) such that x2 + y2 = 1 lie in S1, and these are
the only points. So write y in terms of x. This actually hints to Theorem 2.10.1. //
Example 2.9.3 (The real numbers). R is easily seen to be a n-dimensional smooth manifold as it is the graph of the
identity function from R to R. //

Definition 2.9.4 (Smooth Manifold). Let S ⊆ Rn. Then S is a k-dimensional smooth manifold if it is a
k-dimensional smooth manifold at every point p ∈ S.

Note that in both Definition 2.9.4 and Definition 2.9.1, we require that the dimension k of the manifold be lower than
the dimension of the space it sits in, i.e. k < n.

Now for some non-examples of smooth manifolds.
Example 2.9.5 (A cusp). This comes from [Zam24, Example 4.6.10, p. 268]. Consider the curve determined by
x2 = y3 (see Figure 2.1).

−2 −1 1 2

−1

1

2

x

y

Figure 2.1: Graph of the cusp x2 = y3

This is not a smooth manifold because it is not a smooth manifold at the origin. Notice that any ball around the
origin is not the graph of a C1 function, as the function f(x) = x2/3 is not differentiable at the origin. A more careful
proof of this fact can be found in [Zam24, Example 4.6.11, p. 268]. //
Example 2.9.6 (Figure 8). This example comes from [Zam24, Example 4.6.10, p. 268] as well. Consider the figure 8
shape determined by the equation x4 = x2 − y2 (see Figure 2.2). Any ball at the origin intersected with this shape
cannot produce a graph, since for each value of x, you need to have 2 different y values. If x is treated as a function
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Figure 2.2: Graph of the figure 8 shape x4 = x2 − y2

of y instead, then 2 different x values need to be provided for a single y value. Consequently S cannot be a graph at
the origin so it cannot be a smooth manifold at the origin. //

Here are some non-examples of smooth manifolds in 2 dimensions. TODO: add these

2.9.1 Diffeomorphisms

Recall from linear algebra that a vector space isomorphism is a bijective linear transformation. Vector space
isomorphisms preserve all the structure we care about in a vector space (algebraically speaking). A diffeomorphism
is an isomorphism, but for smooth manifolds instead. It preserves the properties we care about for smooth
manifolds.

Definition 2.9.7 (Diffeomorphism). Let U, V ⊆ Rn be open sets. Then f : U → V is a diffeomorphism if f is
bijective, C1 and f−1 : V → U is also a C1 function.

Note that the condition of f−1 being C1 is absolutely necessary since f being C1 does not guarantee that f−1 is C1.
Example 2.9.8. Let f(x) = x3. Then f−1(y) = 3

√
y. f−1 is differentiable, but its derivative is discontinuous at 0.

For more details, see [Zam24, Example 5.5.5, p. 326]. //
Proposition 2.9.9. Let U, V ⊆ Rn be open and f : U → V be a diffeomorphism. Then, the following are true:

1. O ⊆ U is open (closed) iff f(O) is open (closed).

2. K ⊆ U is compact iff f(K) is compact.

3. S ⊆ U is (path)-connected iff f(S) is (path)-connected.

Proof. A diffeomorphism is a homeomorphism.

Proposition 2.9.10. Let f : U → V be a diffeomorphism and S ⊆ U , p ∈ S. Then v ∈ TpS if and only if
v ∈ Tf(p)f(S).

Proof. Apply the definition. You will need to use the chian rule (Theorem 2.3.1) in the proof.

Definition 2.9.11 (Local Diffeomorphism). Let A,B ⊆ Rn be open and a ∈ A. Let f : A → B. Then f is a local
diffeomorphism at a if there is an open set U ⊆ A containing a such that f |U : U → f(U) is a diffeomorphism.
The inverse f |−1

U is called a local inverse for f at a.

Clearly every global diffeomorphism is a local diffeomorphism, however the converse is untrue. Even if a function is a
local diffeomorphism at every point, it may still not be a global diffeomorphism.
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Example 2.9.12. Let f(x, y) = (ex cos y, ex sin y). Then Df(x, y) is invertible for all (x, y) so f is a local diffeo-
morphism at every point in R2. However notice that f(x, y) = f(x, y + 2π) so f is not injective and thus is not a
diffeomorphism. //
Proposition 2.9.13. If f is a local diffeomorphism at a, then Df(a) is invertible and satisfies

Df−1(f(x)) = (Df(x))
−1

.

Proof. Apply the chain rule.

The converse of this proposition is the inverse function theorem (Theorem 2.10.2). Thus we summarize that f is a
local diffeomorphism at a if and only if Df(a) is invertible.

2.10 Implicit and inverse functions

Theorem 2.10.1 (Implicit function theorem). Let F : Rn+k ×Rk, F (x,y) be C1 on some neighborhood U ⊆ Rn+k

of the point (a,b) ∈ Rn+k and suppose that F (a,b) = 0 and ∂Fy(a,b) is invertible. Then there is an open ball
centered at a of radius r and a unique C1 function f : B(a, r) → Rk such that F (x, f(x)) = 0 for all x ∈ B(a, r).

Note that

∂Fy =


∂F1

∂y1
· · · ∂F1

∂yk
...

. . .
...

∂Fk

∂y1
· · · ∂Fk

∂yk

 ,

since we have

Df =


∂F1

∂x1
· · · ∂F1

∂xn

∂F1

∂y1
· · · ∂F1

∂yk
...

. . .
...

...
. . .

...
∂Fk

∂x1
· · · ∂Fk

∂xn

∂Fk

∂y1
· · · ∂Fk

∂yk


Proof. Proof from scratch To be done.

Proof using Theorem 2.10.2. To be done.

Theorem 2.10.2 (Inverse function theorem). Let f : Rn → Rn be continuously differentiable in an open set
containing a and suppose Df(a) is invertible. Then, there is some open set V ⊆ Rn that contains a and an
open set W ⊆ Rn that contains f(a) such that f : V → W has a continuous inverse f−1 : W → V , which is
differentiable and for all y ∈ W , we have

D(f−1)(y) = [Df(f−1(y))]−1.

Proof from scratch. Very long. See [Spi18, Thm 2-11].

Proof using Theorem 2.10.1. Define F : Rn × Rn → Rn by F (x,y) = y − f(x). To be completed.
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Chapter 3

Integration

3.1 Riemann integration

Recall that a partition of an interval [a, b] is a set of points { t0, . . . , tn } where a = t0 < t1 < · · · < tn = b. Given a
rectangle R = [a1, b1]× · · · × [an, bn] ⊆ Rn, a partition P of R is a collection of partitions P1, . . . , Pn, where Pi is a
partition of [ai, bi]. Now suppose we partition [a1, b1]× [a2, b2] with P1 = { ti }n0 and P2 = {xi }m0 . Given tk−1, tk and
xj−1, xj we can form a subrectangle [tk−1, tk]× [xj−1, xj ]. Notice here that valid subrectangles would be a product
of subintervals of the partition. This notion generalizes easily to higher dimensions.

Let R ⊂ Rn be a rectangle, let f : R → R be a bounded function. Let P be a partition of R, let S be a subrectangle
of P , and define

mS(f) = inf
x∈S

f(x)

MS(f) = sup
x∈S

f(x)

The upper sum of f on P is denoted U(f, P ), and the lower sum of f on P is denoted L(f, P ). They are defined by

L(f, P ) =
∑

S∈RP

mS(f)v(S)

U(f, P ) =
∑

S∈RP

MS(f)v(S),

where v(S) is the volume of a subrectangle and RP is the subrectangles of a partition P . The upper integral is
denoted U(f) and the lower integral is denoted L(f). They are defined by

U(f) = inf {U(f, P ) : P ∈ P }
L(f) = sup {L(f, P ) : P ∈ P }

where P is the set of all partitions of R. Note that U(f) and L(f) always exist whenever f is bounded.

A refinement of a partition P = (P1, . . . , Pn) is a partition P ′ = (P ′
1, . . . , P

′
n) such that Pi ⊆ P ′

i . It thus follows that
if P ′ refines P , every subrectangle of P ′ is contained in some subrectangle of P .
Lemma 3.1.1 (Upper lower sum inequalities). Suppose P ′ refines P . Then, L(f, P ) ≤ L(f, P ′) and U(f, P ) ≥
U(f, P ′).

Proof. Apply the definitions.

Corollary 3.1.2. Given any 2 partitions P, P ′, L(f, P ) ≤ U(f, P ′).
Corollary 3.1.3. The lower integral is always smaller than the upper integral, i.e. L(f) ≤ U(f).
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Definition 3.1.4 (Integrability). If f : R → R is a bounded function on a rectangle R ⊂ Rn, then f is said to be
integrable if U(f) = L(f).

Proposition 3.1.5 (Integrability criterion). Let f : R → R be a bounded function on a rectangle R ⊆ Rn. Then, f is
integrable if and only if for every ε > 0, there is a partition P such that U(f, P )− L(f, P ) < ε.

Proof. For the forward direction, take partitions P, P ′ such that U(f, P )−L(f, P ′) < ε and let P ′′ refine both P and
P ′. The converse is immediate.

Theorem 3.1.6 (Properties of Integrals). Let f, g : R → Rn be integrable functions defined on a rectangle R ⊂ Rn.
Then, the following are true:

1. (Linearity) Let c ∈ R. Then, f + cg is integrable, and
∫
R
f + cg =

∫
R
f + c

∫
R
g.

2. (Monotonicity) Suppose f ≤ ga. Then,
∫
R
f ≤

∫
R
g.

3. (Product) The product function fg is integrable (defined as fg(x) = f(x)g(x)).

4. |f | is integrable, and
∫
R
|f | ≥

∣∣∫
R
f
∣∣.

aThis is pointwise, i.e. for all x, f(x) ≤ g(x)

Proof. (1), (2) follow from the definition. For (3), prove that the function f2 defined by f2(x) = f(x)f(x) is integrable
first, then notice (f + g)2 = f2 + 2fg + g2. For (4), just play around with it.

Definition 3.1.7 (Measure Zero). Let S ⊆ Rn. Then S is said to have measure 0 if given ε > 0, there is a
countable collection of rectangles (Rn)n∈N that cover S (i.e.

⋃
n∈N Rn ⊇ S) and have total volume less than ε,

i.e.
∑∞

1 v(Rn) < ε, where v(Rn) denotes the volume of the rectangle Rn.

Note that this agrees with the definition of a set having 0 Lebesgue measure.

The following theorem tells us that every Riemann integrable function is continuous almost everywhere.

Theorem 3.1.8 (Lebesgue’s Criterion). Let R be a rectangle in Rn and let f : R → R. Then, f is integrable on R
if and only if the set of discontinuities of f has measure 0.

If a function integrates to 0, is it the zero function? Almost everywhere.
Lemma 3.1.9. Suppose f : R → R. Then {x : f(x) ̸= 0 } if and only if f is integrable and

∫
R
f = 0.

Proposition 3.1.10. Let f, g : R → R and suppose f is integrable. If the set {x : f(x) ̸= g(x) } has measure 0, then
g is integrable and

∫
R
g =

∫
R
f .

3.2 Partitions of unity

Definition 3.2.1 (Support of a function). Let f : X → R be a real valued function. The support of f is defined
to be the set of points in X where f is not zero, i.e.

supp f = {x ∈ X : f(x) ̸= 0 } .

We can additionally talk about the closed support of f , which if X is a topological space, will simply involve taking
the closure of supp f . If the closed support of f is compact, then f is said to have compact support.

Let A ⊆ Rn. Then a collection of sets (Sα)α∈J is said to be locally finite for A if for all x ∈ A, there is a neighborhood
U of x such that U intersects only finitely many Sα (i.e. there are finitely many indices α such that U ∩ Sα is
nonempty)1.

1We introduce this definition to make defining
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Definition 3.2.2 (Smooth partition of unity). Let A ⊆ Rn and U = {Uα : α ∈ J } be an open cover of A. A C∞

partition of unity for A subordinate to U is a countable collection of C∞ functions {φi : U → R, i ∈ N }
where U is open and A ⊆ U satisfying the following properties:

1. 0 ≤ φi(x) ≤ 1 for all x ∈ A;

2. The collection of supports is locally finite for A;

3. For all x ∈ A,
∑∞

i=1 φi(x) = 1;

4. Each φi has compact support;

5. For every φi, there is some Uα such that suppφi ⊆ Uα

A collection of functions that satisfy only 1-3 is simply called a partition of unity for A. Condition (5) is needed for
the collection of functions to be subordinate to U . Due to (2), the sum in (3) will always converge.

Note that we are following the definition of [Spi18, Thm 3.11, p. 63].
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Chapter 4

Differential Forms

To talk about the generalized Stokes theorem, we need to introduce the language of differential forms. Differential
forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds.
Previously, we have been treating things like dx and dy as simply notation. With differential forms, these come to life
as actual mathematical objects.

To talk about differential forms, we need to talk about alternating tensors. To talk about alternating tensors, we need
to introduce tensors.

4.1 Introductory multilinear algebra

We take the first step towards understanding the language of differential forms, namely, that of tensors. We will only
talk about this material to the extent that it is necessary for discussing differential forms. Interested readers may
view for instance, [Axl24, Chp. 9] for a deeper treatment on the theory.

Definition 4.1.1 (Multilinear Function/Tensor). A function T : V k → R is multilinear if for every i ∈ { 1, . . . , k },
the following are true:

T (v1, . . . , vi + v′i, . . . , vk) = T (v1, . . . , vi, . . . , vk) + T (v1, . . . , v
′
i, . . . , vk),

T (v1, . . . , avi, . . . , vk) = aT (v1, . . . , vi, . . . , vk).

So T is multilinear if it linear in each argument separately.

A multilinear function T : V k → R is called a k-tensor on V .

What we have technically defined above is a multilinear functional, since it is a linear map into the underlying field.
However, we will really only care about such objects since we are going to investigate tensors.

The set of all k-tensors on V will be denoted Jk(V ). There is a natural vector space structure on Jk(V ) obtained by
passing to V . Namely, we define S + T and aS to be the tensors

(S + T )(v1, . . . , vk) = S(v1, . . . , vk) + T (v1, . . . , vk),

(aS)(v1, . . . , vk) = a · S(v1, . . . , vk).

Now, Jk(V ) is special because not only are the tensors in Jk(V ) vectors, tensors in Jk(V ) can also interact with
tensors in Jl(V ). This operation is called a tensor product.
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Definition 4.1.2 (Tensor product). Let S ∈ Jk(V ) be a k-tensor and T ∈ Jl(V ) be a l-tensor. The tensor
product of S and T , denoted S ⊗ T ∈ Jk+l(V ), is a k + l tensor given by

(S ⊗ T )(v1, . . . , vk, vk+1, . . . , vk+l) = S(v1, . . . , vk) · T (vk+1, . . . , vk+l).

When defining a new operation, we need to discuss its algebraic properties.
Proposition 4.1.3. The tensor product satisifies the following:

(1) (S1 + S2)⊗ T = S1 ⊗ T + S2 ⊗ T .

(2) S ⊗ (T1 + T2) = S ⊗ T1 + S ⊗ T2.

(3) (aS)⊗ T = S ⊗ (aT ) = a(S ⊗ T ).

(4) (S ⊗ T )⊗ U = S ⊗ (T ⊗ U).

So it is associative, distributive over addition of tensors, and plays nicely1 with scalar multiplication of tensors.

Proof. Apply the definitions. Otherwise see Appendix A.

In light of Proposition 4.1.3, we will drop the parentheses when discussing (S ⊗ T )⊗U , and simply write S ⊗ T ⊗U .
Warning 4.1.4. The tensor product is not commutative in general. So, S ⊗ T is usually not equal to T ⊗ S.

We bring our attention to 1-tensors. A 1-tensor is simply a linear functional and so J1(V ) is just V ∗, the dual space
of V . Is such an easy description coincidental? Is there any relation of the space of k-tensors with V ∗? Luckily, the
answer is yes.

Suppose v1, . . . , vn is a basis of V . Then, the dual basis, denoted φ1, . . . , φn are linear functionals with the property2

that φi(vj) = 1 if i = j, and 0 if i ̸= j.
Proposition 4.1.5. Let v1, . . . , vn be a basis of V , and let φ1, . . . , φn be the dual basis. The set of all possible k-fold
tensor products

φj1 ⊗ · · · ⊗ φjk

where ji ∈ { 1, . . . , n } is a basis of Jk(V ).

It thus follows that Jk(V ) has dimension nk.

Proof. Let us first make an important observation. Fix j1, . . . , jk ∈ { 1, . . . , n }. For any i1, . . . , ik ∈ { 1, . . . , n },
notice that

φj1 ⊗ · · ·φjk(vi1 , . . . , vik) =

{
1 if j1 = i1, . . . , jk = ik,

0 otherwise.

Let us check that these guys span Jk(V ). Let T ∈ Jk(V ).

Given any vector space, we can always construct the set of k tensors on it. Linear transformations also induce a
transformation of corresponding tensor spaces.

Definition 4.1.6 (Induced linear transformation of tensor spaces.). Suppose f : V → W is a linear transformation.
Then, there is a linear transformation f∗ : Jk(W ) → Jk(V ) defined by

f∗T (v1, . . . , vk) = T (f(v1), . . . , f(vk)).

Thus it assigns a k tensor on W , T ∈ Jk(W ) to a k tensor on V , f∗.

In this case the transformation is ”backward”. So, this means (g ◦ f)∗ = f∗ ◦ g∗, which we leave the reader to verify.

At this stage, we haven’t given many examples of tensors. So let us now give some examples.
Example 4.1.7. Of course any element of V ∗ is a 1-tensor. //

1I need a better name for this
2Note here that specifying its behavior on the basis elements is sufficient, you would simply linearly extend these maps.
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Example 4.1.8. Recall that an inner product is a conjugate symmetric, positive definite and bilinear map. Since
we are working over R, our inner products are symmetric. So any inner product on a vector space V qualifies as a
2-tensor.

To be more precise, let V be a real vector space. Then an inner product on V is a 2-tensor T which is symmetric, i.e.
T (v, w) = T (w, v), and positive definite, i.e. T (v, v) > 0 and T (v, v) = 0 if and only if v = 0. //
Proposition 4.1.9. Suppose T is an inner product on V . Then, there is an orthonormal basis of V with respect to
T . Moreover, there is an isomorphism f from Rn to V such that T (f(u), f(v)) = ⟨u, v⟩.

Proof. Consequence of linear algebra. In particular, apply Grahm-Schmidt on some basis of V to obtain an orthonormal
basis of V . The isomorphism can be defined by sending each standard basis vector of Rn to a corresponding basis
vector in the orthonormal basis we just found.

Another tensor one might be familiar with is the determinant. The determinant is a n tensor, so det ∈ Jn(Rn), with
the special property that is is alternating. Switching any 2 rows of a matrix changes the sign of the determinant. We
now generalize this notion to other tensors.3

Definition 4.1.10 (Alternating tensor). A k-tensor ω ∈ Jk(V ) is alternating if for all v1, . . . , vk ∈ V ,

ω(v1, . . . , vi, . . . , vj , . . . , vk) = −ω(v1, . . . , vj , . . . , vi, . . . , vk).

So switching any 2 arguments changes its sign.

Let us call the set of alternating4 k tensors on V by Ak(V ). This is not only a set, it is a subspace of Jk(V ). Now,
what lives in Ak(V )? We know one element if k = dimV , the determinant. We know that the determinant is actually
quite hard to define. This does not bode too well for us being able to produce alternating tensors. Luckily, it turns
out that there is a consistent way to expressing all the alternating tensors. We will first content ourselves with having
a formula that will produce an alternating tensor from any tensor.

Let us first begin by recalling that Sk is the symmetric group on the set { 1, . . . , k }, and the sign of a permutation
sgnσ is 1 if σ is even and -1 if σ is odd. We define a function Alt(T ) that sends a k tensor T ∈ Jk(V ) to an alternating
tensor, by the following:

Alt(T)(v1, . . . , vk) =
1

k!

∑
σ∈Sk

sgnσ · T (vσ(1), . . . , vσ(k)).

The next proposition shows that the function we defined does actually take a tensor to an alternating tensor, it is a
linear function and it does not disturb any alternating tensors.
Proposition 4.1.11 (Properties of Alt).

(1) The map Alt is linear.

(2) If T is a k tensor, then Alt(T ) is alternating, so Alt(T ) ∈ Ak(V ).

(3) The map Alt is the identity on Ak(V ), i.e. if θ ∈ Ak(V ),Alt(θ) = θ.

(4) The map Alt is idempotent, so that Alt(Alt(T )) = Alt(T ).

Before we see the proof, let us first discuss how we shall approach it. For part 2, we would like to show that
Alt(T )(v1, . . . , vj , . . . , vi, . . . , vk) = −Alt(T )(v1, . . . , vi, . . . , vj , . . . , vk). Looking at the definition of Alt, and armed
with some knowledge of group theory, we might have an idea of how to proceed. Since any coset of Sk is simply Sk, if
we consider the transposition (i, j) which swaps around the i and j arguments, we can say say that every σ′ ∈ Sk can
be written as (i, j) ◦ σ where σ ∈ Sk. Now we can basically do the proof

Proof. (1) is left to the reader. Otherwise see Appendix A.

3Explain why we would want to do such a thing.
4Note that some authors will choose to denote this by Λk(V ∗) or Λk(V ). The former notation is fine. The latter notation is bad and

used in [Spi18]. We have chosen to instead adopt the notation used by [Mun98].
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For (2), we consider the transposition (i, j). so (i, j) fixes everything except i and j. For σ ∈ Sk, we let σ′ = σ ◦ (i, j)
Thus,

Alt(T )(v1, . . . , vj , . . . , vi, . . . , vk)

=
1

k!

∑
σ∈Sk

sgnσ · T (vσ(1), . . . , vσ(j), . . . , vσ(i), . . . , vσ(k))

=
1

k!

∑
σ∈Sk

sgnσ · T (vσ′(1), . . . , vσ′(i), . . . , vσ′(j), . . . , vσ(k))

Left multiplying every σ ∈ Sk by (i, j) leaves the sum unchanged since any coset of Sk is Sk itself anyway. Additionally,
notice that σ′(i) = σ(j) and σ′(j) = σ(i).

Continuing, we see that the above equation is equal to

1

k!

∑
σ′∈Sk

− sgnσ′ · T (vσ′(1), . . . , Tvσ′(k)
).

If σ was even, then σ′ is odd. The same is true when swapping the words even and odd. This is why the negative
sign appears. The result therefore follows.

(4) follows from (2) and (3).

4.2 The wedge product

We already have a tensor product. But what if we would like to take the tensor product of 2 alternating tensors?
Ideally, it would be nice if they produced an alternating tensor. Alas, this is not the case. For instance, det⊗det is
certainly not alternating. We can instead work around this by defining a new product, which will produce alternating
tensors.

(If you are unsatisfied with this motivation, we shall motivate this in an alternative way. We need wedge products to
talk about differential forms. You want to understand differential forms. Therefore you want to understand wedge
products. )

Definition 4.2.1 (Wedge Product). Let θ, η be k and l alternating tensors respectively, i.e. θ ∈ Ak(V ), η ∈ Al(V ).
Then, the wedge product of θ and η is defined to be

θ ∧ η :=

(
k + l

k

)
Alt(θ ⊗ η).

Note here that
(
k+l
k

)
= (k+l)!

k!l! . This coefficient is rather strange, but it turns out that we add it so to ensure the
associativity of ∧, which is a rather nontrivial property to show. We first discuss some basic algebraic properties of
the wedge product.
Proposition 4.2.2 (Properties of the wedge product). Let θ ∈ Ak(V ), η ∈ Al(V ). Additionally, let θ1, θ2 ∈ Ak(V )
and η1, η2 ∈ Al(V ).

(1) (θ1 + θ2) ∧ η = θ1 ∧ η + θ2 ∧ η;

(2) θ ∧ (η1 + η2) = θ ∧ η1 + θ ∧ η2;

(3) If c ∈ R, cθ ∧ η = θ ∧ cη = c(θ ∧ η);

(4) θ ∧ η = (−1)klη ∧ θ;

(5) If f : W → V is a linear map, then f∗(θ ∧ η) = f∗(θ) ∧ f∗(η).

Proof. To avoid disrupting the flow, the reader should supply the proof in their own time. Otherwise see Appendix A.
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From Proposition 4.2.2, we see that 1,2,3 tell us that the wedge product is linear. Property 4 tells us that the wedge
product is antisymmetric. (We will see why it is called antisymmetric shortly)

Missing from Proposition 4.2.2 is the associativity of the wedge product. Fret not, it is associative, but it will simply
take a little bit more work to prove.
Proposition 4.2.3 (Associativity of the wedge product).

(1) If S ∈ Jk(V ) and T ∈ J l(V ) and Alt(S) = 0, then

S⊗ T = T⊗ S = 0.

(2) Alt(Alt(ζ ⊗ η)⊗ θ) = Alt(ζ ⊗ η ⊗ θ) = Alt(ζ ⊗Alt(η ⊗ θ)).

(3) If ζ ∈ Ak(V ), η ∈ Al(V ), θ ∈ Am(V ), then

(ζ ∧ η) ∧ θ = ζ ∧ (η ∧ θ) =
(k + l +m)!

k!l!m!
Alt ζ ⊗ η ⊗ θ.

4.3 Vector fields and forms

Warning 4.3.1. The content ahead is extremely abstract!

Definition 4.3.2 (Geometric Tangent Space). For each point p ∈ Rn, the geometric tangent space of Rn at p
is the set { p } × Rn, and it is denoted Rn

p .

We make this Rn
p into a vector space in an obvious way, namely by defining (p,v) + (p,w) = (p,v + w) and

a · (p,v) = (p, av). Thus, Rn
p is isomorphic to Rn, when Rn is regarded as a vector space. Additionally, we notate a

vector in Rn
p by vp or v|p (we shall prefer the latter notation since it is less confusing). We shall also define the usual

orientation of Rn
p to be [e1|p, . . . , en|p].

Since this assignment can be made for each point p, we can intuitively think about each point p as having the vector
space Rn

p attached to it. Additionally, since Rn
p is isomorphic to Rn as a vector space, the set Jk(Rn

p ), which is the

space of k-tensors on Rn
p is well defined and it is isomorphic to Jk(Rn).

Definition 4.3.3 (Vector field). Let M = Rn. Let TM denote the disjoint union of all the geometric tangent
spaces at every point p ∈ M , i.e. TM =

⊔
p∈M Rn

p . Then a vector field is a function F : M → TM such that
F (p) ∈ Rn

p .

The reader is probably aware of some vector fields. If f : Rn → R is differentiable, then we can assign to each p ∈ Rn,
its derivative Df(p), thought of as a vector. It would also be useful to be able to attach to each point p ∈ M , a tensor.

Definition 4.3.4 (Tensor field). Let M = Rn. Let JkM denote the disjoint union of all k-tensor spaces of Rn
p

at each point p of M , i.e. JkM =
⊔

p∈M Jk(Rn
p ). A k-tensor field is a function F : M → JkM such that

F (p) ∈ Jk(Rn
p ).

So, a tensor field is a function that assigns to each point p, a k-tensor. We shall say that F is a k-tensor field on Rn.
If a tensor field assigns every point to an alternating tensor, it is special and gets its own name, a differential form.
These will be the main objects of our study.

Definition 4.3.5 (Differential form). A k-tensor field F for which F (p) ∈ Ak(Rn
p ) is a differential form or

k-form. So a k tensor field assigns an alternating k-tensor to each point p.

The first thing we’d like to do is to understand how we can express all differential forms in a consistent way. Since
Ak(Rn) is a vector space it has a basis. We can generalize this notion as a ”basis” for differential forms. For each
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p ∈ M , we see that ω(p) ∈ Ak(Rn). We should try to express ω(p) in terms of our basis of Ak(Rn). For each p, ω(p)
is a linear combination of φi1 ∧ · · · ∧ φik , i.e.

ω(p) =
∑

i1<···<ik

a
(p)
i1,...,ik

φi1 ∧ · · · ∧ φik .

We can capture all the scalar coefficients as functions in terms of p, so that ω(p) can be represented as

ω(p) =
∑

i1<···<ik

ωi1,...,ik(p)φi1 ∧ · · · ∧ φik .

With a slight abuse of notation, we shall let φik(p) = φik denote the ikth dual basis element in Rn. This means that

ω(p) =
∑

i1<···<ik

ωi1,...,ik(p) · [φi1(p) ∧ · · · ∧ φik(p)] (4.1)

Now, we can talk about what it means for a differential form to be continuous or differentiable. We shall say that ω is
continuous/differentiable if all the functions ωi1,...,ik are continuous or differentiable. To make life easy, when we say
that a vector field or differential form is differentiable, we shall assume it is C∞.

Naturally, operations on tensors can be extended to differential forms. We shall define them explicitly, although the
reader has probably already guessed how to do them: pointwise.

Definition 4.3.6 (Operations on differential forms). Let ω, η be differential forms such that ω(p), η(p) ∈ Ωk(Rn).
We define the addition of the forms ω + η to be (ω + η)(p) = ω(p) + η(p). If f : Rn → R is a function, we define
the scalar product f ·ω to be (f ·ω)(p) = f(p)ω(p). If η is an l-form, i.e. η(p) ∈ Ωl(Rn), we can define the wedge
product ω ∧ η to be (ω ∧ η)(p) = ω(p) ∧ η(p).

Actually, a function f : Rn → R can be considered as a 0-form, and thus f · ω can also be written as f ∧ ω.

This is extremely abstract, so we shall provide some examples. Luckily, all these examples are familiar; we need only
interpret them in the language of differential forms.
Example 4.3.7 (The gradient vector field). Let f : Rn → R be differentiable. Now, this means that for each point
p ∈ Rn, Df(p) exists, and it is a linear functional. As such Df(p) ∈ Ω1(Rn). So we can kind of see how Df , which
assigns to each point p ∈ Rn the 1-tensor Df(p), should be a differential form. However, Df(p) puts out things
in Ω1(Rn), and we need it to be a tensor field. Thus, let us define df , which assigns to each p ∈ Rn, the 1-tensor
Df(p)(−)|p. So, we can write

df(p)(v|p) = Df(p)(v)|p.
//

Remark 4.3.8. Note that other authors (e.g. [Spi18]) will have df putting out vectors. We have instead chosen to
unify them with the more general case to help with understanding. If you choose to see df as putting out gradient
vectors, just know that Df(p) is a linear functional, and it is precisely v 7→ ∇f(p) ·v (here · is the usual inner product
on Rn).

Recall that πi : Rn → Rm is the projection onto the i-th coordinate. We shall be very interested in the 1-forms,
dπi, for the reason that they serve a similar purpose as Equation (4.1): they will allow us to express all k-forms in
terms of them. They are usually denoted dx1, so here xi denotes the function πi. (If we are working in R3, we would
denote x1, x2, x3 by x, y, z instead.) Now, dxi(p) = dπi(p) = Dπi(p) = πi, so this tells us that dxi(p) is really just
projection onto the ith coordinate. In the notation from Equation (4.1), we know that φi(p), which is the i-th dual
basis element, is also projection onto the ith coordinate. Thus, we can actually express every k-form ω like

ω =
∑

i1<···<ik

ωi1,...,ikdxi1 ∧ · · · ∧ dxik . (4.2)

The previous example is important enough to do an explicit calculation of what df is. The reader has probably
already guessed the proof.
Proposition 4.3.9. If f : Rn → R is differentiable, then we have

df = D1f · dx1 + · · ·+Dnf · dxn.

Proof. Fix p, then df(p) = Df(p). So, given a vector v|p, df(p)(v|p) = Df(p)(v) =
∑n

i=1 Dif(p) · vi. As discussed
above,

∑n
i=1 Dif(p) · vi =

∑n
i=1 Dif(p) · dxi(p)(v|p), so the result follows.
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4.3.1 The pushforward and pullback

We will need 2 more concepts before we can talk about integration on chains. These are respectively called the
pushforward and the pullback. The pushforward of a smooth map turns tangent vectors on the domain space into
tangent vectors on the codomain space.

φ( x)

dφ( x)

T x

T φ(x)N

M N

M

Figure 4.1: Visualization of a pushforward. Photo from [24]

Example 4.3.10 (The derivative tensor field). Now let us consider a differentiable function f : Rn → Rm. To reduce
confusion further down the line, let M = Rn and N = Rm. Since f is differentiable, each point p ∈ M comes with the
linear transformation Df(p) : Rn → Rm. Recalling from the previous example that Df is basically a vector field, we
would now like to do the same here, making Df into a tensor field. As such, we need to make Df(p) into a linear
transformation of tangent spaces. In particular we would like it to go from Rn

p to Rm
f(p). So we shall define the map

f∗ : Rn
p → Rm

f(p) by

f∗(v|p) = (Df(p)(v))|f(p).
Again, f∗ is seen to be Df(p)(−)|f(p). The notation f∗ is called the pushforward, because we are pushing tangent
vectors on M forward to tangent vectors on N . //

Definition 4.3.11 (Pushforward of a smooth map). Let f : Rn → Rm be a differentiable map and let p be a point
in Rn. Let v|p∈ Rn

p . The pushforward of f , denoted f∗, is a map f∗ : Rn
p → Rm

f(p) defined by

f∗(v|p) := (Df(p)(v))|f(p).

We shall remark that the above definition is abusive. After all, the domain and codomain of the pushforward of f
clearly changes depending on the point p.
Warning 4.3.12. Some authors such as [Spi18, p. 89] are very obtuse about what f∗ is.

In the previous example, the pushforward f∗ is a linear map. As such, it induces a linear map of tensor spaces. In this
case since f∗ : Tp(M) → Tf(p)(N), the linear map it induces goes Jk(Tf(p)(N)) → Jk(Tp(M)). Since we are discussing
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differential forms, it is natural that we should attempt to use f∗ to change differential forms on N to differential forms
on M . As such, we will only care about the linear map it induces between Ωk(Tf(p)(N)) and Ωk(Tp(M)). Thus we will

focus on (f∗)
∗ : Ωk(Tf(p)(N)) → Ωk(Tp(M)). We can now use (f∗)

∗ to turn k forms on Tf(p)(N) into k forms on Tp(M).
The reader may have already guessed how to define the next part. If η is an alternating k tensor on Tf(p)(N), and we
had k vectors v1|p, . . . ,vk|p ∈ Tp(M), then by Definition 4.1.6, (f∗)

∗(η)(v1|p, . . . ,vk|p) = η(f∗(v1|p), . . . , f∗(vk|p)).
What we have just introduced is called the pullback of a differential form.

Let ω be a k-form on Tf(p)(N). As a slight abuse of notation, we shall identify ω as a k-form on N instead. We then
define5 the map f∗ from the k forms on N to the k forms on M . In particular, f∗ω is a k form on M , and it is
defined by

(f∗ω)(p) = (f∗)
∗(ω(f(p))).

Definition 4.3.13 (Pullback of a differential form). Let f : Rn → Rm be a differentiable map and let ω ∈ Ωk(Rm)

To explicitly unpack this definition, this means that if we had v1|p, . . . ,vk|p ∈ Tp(Rn), we would have (f∗ω)(p) =
ω(f(p))(f∗(v1|p), . . . , f∗(vk|p)). In order to better understand the above abstractions, we shall show a few applications
of the definition in the following proposition.
Proposition 4.3.14. Let f : Rn → Rm be differentiable. Then, we have:

1. f∗(dxi) =
∑n

j=1 Djfi · dxj,

2. f∗(ω1 + ω2) = f∗(ω1) + f∗(ω2),

3. f∗(g · ω) = (g ◦ f) · f∗ω,

4. f∗(ω ∧ η) = f∗ω ∧ f∗η.

Proof. To be included. See [Spi18, p. 90].

Unfortunately, expressions where we expand out all the f∗(dxi) terms tend to be complicated. However, there is one
case where it is relatively simple. We make this explicit; for it will be essential in understanding how integration on
differential forms work later on.
Proposition 4.3.15. Let f : Rn → Rn be differentiable. If ω = gdx1 ∧ · · · ∧ dxn is an n-form, then

f∗(ω) = (g ◦ f) · detDf.

4.4 The exterior derivative

In Example 4.3.7, we saw the gradient vector field. We now turn this into something called the exterior derivative.

5It is to be noted that the last line of [Spi18, p. 89] has a typo in the definition. The definition as given in these notes is the correct one.
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Chapter 5

Integration of Differential Forms

The language of Stoke’s theorem is that of chains and forms. Since we plan to integrate forms over chains, we shall
talk about them.

5.1 Chains and cubes

Let us begin by discussing chains and cubes.

Definition 5.1.1 (Singular n-cube). Let A ⊆ Rm. A singular n-cube in A is a continuous function c : [0, 1]n → A.

Note here that
[0, 1]n = [0, 1]× · · · × [0, 1]︸ ︷︷ ︸

n times

.

We also let R0 and [0, 1]0 denote { 0 }.
Notice that a singular 0-cube in A would be a function c : { 0 } → A. This can be identified with a point in A. A
singular 1-cube in A would be a function c : [0, 1] → A. You may recognize this as a curve.

We now define the standard n-cube, which is a simple but very important example of a singular n-cube in Rn.

Definition 5.1.2 (Standard n-cube). The standard n-cube is denoted In and it is the function

In : [0, 1]n → Rn, In(x) = x

A remark about the codomain is in order. If c is a singular n-cube in A, the dimension of the Euclidean space that A
lives in need not be equal to n.

We shall now define a way to do algebra on these n-cubes. An integral linear combination of singular n-cubes will be
called a n-chain.

Readers who have had group theory would recognize this construction as the free abelian group. To be precise, it is
the free abelian group on the set of all singular n-cubes in A.

Definition 5.1.3 (n-chain). Let Cn(A) be the set of all singular n-cubes in A ⊆ Rm. Then, an n-chain in A, g,
is a finite sum of singular n-cubes

g =

p∑
i=1

aici,

where ai ∈ Z and ci ∈ Cn(A).
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We shall denote the set of all n-chains on A as Z[Cn(A)]. We shall now define the addition of n-chains. Readers who
know about free abelian groups may safely skip this.
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Appendix A

Proofs

Proof of Proposition 4.2.2. 1. Given

33



Bibliography

[Mun98] James Raymond Munkres. Analysis on manifolds. eng. 3. pr. Reading, Mass: Addison-Wesley, 1998. isbn:
9780201315967.

[Spi18] Michael Spivak. Calculus on manifolds: a modern approach to classical theorems of advanced calculus. eng.
Mathematics monograph series. Boca Raton London New York: CRC Press, Taylor & Francis Group, 2018.
isbn: 9780805390216.

[Axl24] Sheldon Jay Axler. Linear algebra done right. eng. Fourth edition. Undergraduate texts in mathematics.
Cham Heidelberg New York Dordrecht London: Springer, 2024. isbn: 9783031410260.

[24] Pushforward (differential). en. Page Version ID: 1228803577. June 2024. url: https://en.wikipedia.
org/w/index.php?title=Pushforward_(differential)&oldid=1228803577.

[Zam24] Asif Zaman. Multivariable Calculus with Proofs. 2024.

34

https://en.wikipedia.org/w/index.php?title=Pushforward_(differential)&oldid=1228803577
https://en.wikipedia.org/w/index.php?title=Pushforward_(differential)&oldid=1228803577

	Some prerequisite material
	Notation
	Linear algebra
	Topology

	Differentiation
	Derivatives
	Consequences of differentiability
	The chain rule
	Multivariable MVT
	Partial derivatives
	Higher-order partial derivatives

	Directional derivatives
	Optimization
	Tangent vectors
	Smooth Manifolds
	Diffeomorphisms

	Implicit and inverse functions

	Integration
	Riemann integration
	Partitions of unity

	Differential Forms
	Introductory multilinear algebra
	The wedge product
	Vector fields and forms
	The pushforward and pullback

	The exterior derivative

	Integration of Differential Forms
	Chains and cubes

	Proofs
	References

