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Abstract

Personal notes on the proof of the Yoneda lemma. This is the contravariant
version.

1 Notation
If C is a locally small category then we denote the hom set HomC(x, y) by
C(x, y).

The notation C(−, x) is for the contravariant representable functor which takes
an object y to it’s hom set

y 7→ C(y, x)

and a morphism h : y → z to the morphism of hom sets

C(h, x) : C(z, x) → C(y, x)

Where if f ∈ C(z, x), C(h, x)(f) = f ◦ h (we call this precomposition by h)

Let h : x → y. The notation C(−, h) is for a natural transformation of
contravariant representable functors. Namely, C(−, h) : C(−, x) → C(−, y).

Given 2 set-valued functors F,G : C → Sets, we denote the set of natural
transformations between them by Nat(F,G)
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2 The lemma
Theorem 2.1 (Yoneda Lemma). Let C be a locally small category. Then,
for any object x ∈ C and contravariant set-valued functor F : Cop → Sets,
there an isomorphism Nat(C(−, x), F ) ∼= Fx. Moreover, this isomorphism
is natural in F , meaning the diagram below commutes:

Nat(C(y, x), F ) Fy

Nat(C(y, x), G) Gy

ϑy

∼=

Nat(C(y,x),ϑ)

∼=

and it is natural in x, meaning that

Nat(C(−, x), F ) Fx

Nat(C(−, y), F ) Fy

Nat(C(−,h),F )

∼=

∼=

F (h)

commutes given h : x→ y, a morphism in C

It is highly recommended to pull out a pen and paper and follow along as there
are MANY different mathematical objects here. We section the proof into 4
parts, namely,

1. Defining the isomorphism and checking it is well defined

2. Checking it is bijective

3. Checking it is natural in F

4. Checking it is natural in c

With that in mind, let’s begin.

Construction of the isomorphism. Define

ηx,F : Nat(C(−, x), F ) → Fx

as follows: Given a natural transformation ϑ ∈ Nat(C(−, x), F ), we define

ηx,F (ϑ) = ϑx(1x) (1)

Here, ϑx : C(x, x) → Fx is the morphism, and 1x ∈ C(x, x). Now define

ϕx,F : Fx→ Nat(C(−, x), F )

by taking any a ∈ Fx to the natural transformation ψa : C(−, x) → F where
each component of ψa, (ψa)z for z ∈ C to be (ψa)z : C(z, x) → Fz, taking
h ∈ C(z, x) to F (h)(a). Symbolically,

(ψa)z (h) = F (h)(a)
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Checking that ϕx,F is well defined is left as an exercise for the reader (just check
that the natural transformation produced is in fact a natural transformation)

Proof of the bijection. We would like to check that ϕx,F ◦ ηx,F is indeed the
identity on Nat (C(−, x), F ). Likewise, we need to check that ηx,F ◦ ϕx,F is the
identity on Fx. Let’s do the first one. Let ϑ ∈ Nat (C(−, x), F ). Now,

ϕx,F ◦ ηx,F (ϑ) = ϕx,F (ϑx(1x)) = ψϑx(1x)

Keep in mind that ψϑx(1x) is a natural transformation C(−, x) → F , where
each component

(
ψϑx(1x)

)
z

is a morphism of homsets C(z, x) → Fz, and if
h ∈ C(z, x) then (

ψϑx(1x)

)
z
(h) = F (h)(ϑx(1x)) (2)

Now, since ϑ is natural, for our h ∈ C(z, x), the following commutes:

C(z, x) Fz

C(x, x) Fx

ϑz

F (h)C(h,x)

ϑx

Now, let’s choose the identity morphism 1x ∈ C(x, x). Since the diagram
commutes, we know that (ϑz ◦C(h, x)) (1x) = (F (h) ◦ ϑx) (1x). Referring back
to Equation (2) we can see that the right side is exactly

(
ψϑx(1x)

)
z
(h). Now

let’s see what the left side is. Firstly, C(h, x)(1x) = 1x ◦ h = h. Now this means
that (ϑz ◦C(h, x)) (1x) = ϑz(h). Since h was arbitrary

(
ψϑx(1x)

)
z
= ϑz. Since

z was also arbitrary this means ψϑx(1x) = ϑ.

Now let’s do the next one. This one is easier. Recall that at this point we wish
to check that ηx,F ◦ ϕx,F is the identity on Fx. Let a ∈ Fx be arbitrary. By
definition, ϕx,F (a) = ψa. Now by definition again ηx,F (ψa) = (ψa)x(1x). Recall
that (ψa)x takes h : x→ x to F (h)(a). Now, this means (ψa)x(1x) = F (1x)(a).
Since F is a functor F (1x) is the identity on Fx, so F (1x)(a) = a as desired.

Proof of naturality in F . Let φ : F → G be a natural transformation. We would
like to prove that

Nat(C(−, c), F ) Fc

Nat(C(−, c), G) Gc

φcNat(C(−,c),φ)

ηc,F

ηc,G

commutes. Again, recall that the morphism Nat (C(−, c), φ) simply takes any
ϑ ∈ Nat (C(−, c), F ) and composes it with φ, that is ϑ 7→ φ ◦ ϑ. Now let’s check
this.
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Let ϑ ∈ Nat (C(−, c), F ) be arbitrary. Now,

(φc ◦ ηc,F ) (ϑ)
= φc(ηc,F (ϑ))

= φc(ϑc(1c)) By Equation (1)

By how composition of natural transformations is defined, φc ◦ ϑc = (φ ◦ ϑ)c.
So this means that φc(ϑc(1c)) = (φ ◦ ϑ)c (1c). The natural transformation
φ ◦ ϑ has codomain G, since φ is a natural transformation from F to G. Now
by definition of ηc,G we know that (φ ◦ ϑ)c (1c) = ηc,G (φ ◦ ϑ). Notice that
φ ◦ ϑ is really just Nat(C(−, c), φ)(ϑ). So combining all this together, we have
ηc,G (Nat (C(−, c), φ) (ϑ)). Since ϑ was arbitrary the diagram commutes.

Proof of naturality in c. Let h : x → y be a morphism in C. We would like to
show that

Nat(C(−, x), F ) Fx

Nat(C(−, y), F ) Fy

Nat(C(−,h),F )

ηx,F

ηy,F

F (h)

commutes.

Let ϑ ∈ Nat (C(−, y), F ) be arbitrary. Following the red path, (F (h) ◦ ηy,F ) (ϑ) =
F (h) (ϑy(1y)).

By naturality of ϑ,
C(x, y) Fx

C(y, y) Fy

ϑx

ϑy

F (h)C(h,y)

So

F (h) (ϑy(1y)) = (ϑx ◦C(h, y)) (1y)

= ϑx(1y ◦ h) By definition of C(h, y)

= ϑx(h)

Keep in mind that Nat (C(−, h), F ) precomposes ϑ with C(−, h). That is,
ϑ 7→ ϑ ◦C(−, h). Also, C(−, h)a is a morphism C(a, x) → C(a, y), which takes
a morphism f ∈ C(a, x) and composes it with h, that is f 7→ h ◦ f .
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Now following the blue path,

(ηx,F ◦Nat (C(−, h), F )) (ϑ)
= ηx,F (ϑ ◦C(−, h)) See above paragraph
= (ϑ ◦C(−, h))x (1x) By definition of ηx,F , see Equation (1)
= (ϑx ◦C(−, h)x) (1x) Composition of natural transformations
= ϑx (C(−, h)x(1x))
= ϑx (h ◦ 1x) Definition of C(−, h)x
= ϑx (h)

This completes the proof.
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