

Yoneda lemma notes

Robert

March 2024

Abstract

Personal notes on the proof of the Yoneda lemma. This is the contravariant version.

1 Notation

If \mathbf{C} is a locally small category then we denote the hom set $\text{Hom}_{\mathbf{C}}(x, y)$ by $\mathbf{C}(x, y)$.

The notation $\mathbf{C}(-, x)$ is for the contravariant representable functor which takes an object y to its hom set

$$y \mapsto \mathbf{C}(y, x)$$

and a morphism $h : y \rightarrow z$ to the morphism of hom sets

$$\mathbf{C}(h, x) : \mathbf{C}(z, x) \rightarrow \mathbf{C}(y, x)$$

Where if $f \in \mathbf{C}(z, x)$, $\mathbf{C}(h, x)(f) = f \circ h$ (we call this precomposition by h)

Let $h : x \rightarrow y$. The notation $\mathbf{C}(-, h)$ is for a natural transformation of contravariant representable functors. Namely, $\mathbf{C}(-, h) : \mathbf{C}(-, x) \rightarrow \mathbf{C}(-, y)$.

Given 2 set-valued functors $F, G : \mathbf{C} \rightarrow \mathbf{Sets}$, we denote the set of natural transformations between them by $\text{Nat}(F, G)$

2 The lemma

Theorem 2.1 (Yoneda Lemma). Let \mathbf{C} be a locally small category. Then, for any object $x \in \mathbf{C}$ and contravariant set-valued functor $F : \mathbf{C}^{\text{op}} \rightarrow \mathbf{Sets}$, there is an isomorphism $\text{Nat}(\mathbf{C}(-, x), F) \cong Fx$. Moreover, this isomorphism is natural in F , meaning the diagram below commutes:

$$\begin{array}{ccc} \text{Nat}(\mathbf{C}(y, x), F) & \xrightarrow{\cong} & Fy \\ \text{Nat}(\mathbf{C}(y, x), \vartheta) \downarrow & & \downarrow \vartheta_y \\ \text{Nat}(\mathbf{C}(y, x), G) & \xrightarrow{\cong} & Gy \end{array}$$

and it is natural in x , meaning that

$$\begin{array}{ccc} \text{Nat}(\mathbf{C}(-, x), F) & \xrightarrow{\cong} & Fx \\ \text{Nat}(\mathbf{C}(-, h), F) \uparrow & & \uparrow F(h) \\ \text{Nat}(\mathbf{C}(-, y), F) & \xrightarrow{\cong} & Fy \end{array}$$

commutes given $h : x \rightarrow y$, a morphism in \mathbf{C}

It is highly recommended to pull out a pen and paper and follow along as there are MANY different mathematical objects here. We section the proof into 4 parts, namely,

1. Defining the isomorphism and checking it is well defined
2. Checking it is bijective
3. Checking it is natural in F
4. Checking it is natural in c

With that in mind, let's begin.

Construction of the isomorphism. Define

$$\eta_{x, F} : \text{Nat}(\mathbf{C}(-, x), F) \rightarrow Fx$$

as follows: Given a natural transformation $\vartheta \in \text{Nat}(\mathbf{C}(-, x), F)$, we define

$$\eta_{x, F}(\vartheta) = \vartheta_x(1_x) \tag{1}$$

Here, $\vartheta_x : \mathbf{C}(x, x) \rightarrow Fx$ is the morphism, and $1_x \in \mathbf{C}(x, x)$. Now define

$$\varphi_{x, F} : Fx \rightarrow \text{Nat}(\mathbf{C}(-, x), F)$$

by taking any $a \in Fx$ to the natural transformation $\psi_a : \mathbf{C}(-, x) \rightarrow F$ where each component of ψ_a , $(\psi_a)_z$ for $z \in \mathbf{C}$ to be $(\psi_a)_z : \mathbf{C}(z, x) \rightarrow Fz$, taking $h \in \mathbf{C}(z, x)$ to $F(h)(a)$. Symbolically,

$$(\psi_a)_z(h) = F(h)(a)$$

Checking that $\varphi_{x,F}$ is well defined is left as an exercise for the reader (just check that the natural transformation produced is in fact a natural transformation) \square

Proof of the bijection. We would like to check that $\varphi_{x,F} \circ \eta_{x,F}$ is indeed the identity on $\text{Nat}(\mathbf{C}(-, x), F)$. Likewise, we need to check that $\eta_{x,F} \circ \varphi_{x,F}$ is the identity on Fx . Let's do the first one. Let $\vartheta \in \text{Nat}(\mathbf{C}(-, x), F)$. Now,

$$\varphi_{x,F} \circ \eta_{x,F}(\vartheta) = \varphi_{x,F}(\vartheta_x(1_x)) = \psi_{\vartheta_x(1_x)}$$

Keep in mind that $\psi_{\vartheta_x(1_x)}$ is a natural transformation $\mathbf{C}(-, x) \rightarrow F$, where each component $(\psi_{\vartheta_x(1_x)})_z$ is a morphism of homsets $\mathbf{C}(z, x) \rightarrow Fz$, and if $h \in \mathbf{C}(z, x)$ then

$$(\psi_{\vartheta_x(1_x)})_z(h) = F(h)(\vartheta_x(1_x)) \tag{2}$$

Now, since ϑ is natural, for our $h \in \mathbf{C}(z, x)$, the following commutes:

$$\begin{array}{ccc} \mathbf{C}(z, x) & \xrightarrow{\vartheta_z} & Fz \\ \mathbf{C}(h, x) \uparrow & & \uparrow F(h) \\ \mathbf{C}(x, x) & \xrightarrow{\vartheta_x} & Fx \end{array}$$

Now, let's choose the identity morphism $1_x \in \mathbf{C}(x, x)$. Since the diagram commutes, we know that $(\vartheta_z \circ \mathbf{C}(h, x))(1_x) = (F(h) \circ \vartheta_x)(1_x)$. Referring back to [Equation \(2\)](#) we can see that the right side is exactly $(\psi_{\vartheta_x(1_x)})_z(h)$. Now let's see what the left side is. Firstly, $\mathbf{C}(h, x)(1_x) = 1_x \circ h = h$. Now this means that $(\vartheta_z \circ \mathbf{C}(h, x))(1_x) = \vartheta_z(h)$. Since h was arbitrary $(\psi_{\vartheta_x(1_x)})_z = \vartheta_z$. Since z was also arbitrary this means $\psi_{\vartheta_x(1_x)} = \vartheta$.

Now let's do the next one. This one is easier. Recall that at this point we wish to check that $\eta_{x,F} \circ \varphi_{x,F}$ is the identity on Fx . Let $a \in Fx$ be arbitrary. By definition, $\varphi_{x,F}(a) = \psi_a$. Now by definition again $\eta_{x,F}(\psi_a) = (\psi_a)_x(1_x)$. Recall that $(\psi_a)_x$ takes $h : x \rightarrow x$ to $F(h)(a)$. Now, this means $(\psi_a)_x(1_x) = F(1_x)(a)$. Since F is a functor $F(1_x)$ is the identity on Fx , so $F(1_x)(a) = a$ as desired. \square

Proof of naturality in F . Let $\phi : F \rightarrow G$ be a natural transformation. We would like to prove that

$$\begin{array}{ccc} \text{Nat}(\mathbf{C}(-, c), F) & \xrightarrow{\eta_{c,F}} & Fc \\ \text{Nat}(\mathbf{C}(-, c), \phi) \downarrow & & \downarrow \phi_c \\ \text{Nat}(\mathbf{C}(-, c), G) & \xrightarrow{\eta_{c,G}} & Gc \end{array}$$

commutes. Again, recall that the morphism $\text{Nat}(\mathbf{C}(-, c), \phi)$ simply takes any $\vartheta \in \text{Nat}(\mathbf{C}(-, c), F)$ and composes it with ϕ , that is $\vartheta \mapsto \phi \circ \vartheta$. Now let's check this.

Let $\vartheta \in \text{Nat}(\mathbf{C}(-, c), F)$ be arbitrary. Now,

$$\begin{aligned} & (\phi_c \circ \eta_{c, F})(\vartheta) \\ &= \phi_c(\eta_{c, F}(\vartheta)) \\ &= \phi_c(\vartheta_c(1_c)) \end{aligned} \quad \text{By Equation (1)}$$

By how composition of natural transformations is defined, $\phi_c \circ \vartheta_c = (\phi \circ \vartheta)_c$. So this means that $\phi_c(\vartheta_c(1_c)) = (\phi \circ \vartheta)_c(1_c)$. The natural transformation $\phi \circ \vartheta$ has codomain G , since ϕ is a natural transformation from F to G . Now by definition of $\eta_{c, G}$ we know that $(\phi \circ \vartheta)_c(1_c) = \eta_{c, G}(\phi \circ \vartheta)$. Notice that $\phi \circ \vartheta$ is really just $\text{Nat}(\mathbf{C}(-, c), \phi)(\vartheta)$. So combining all this together, we have $\eta_{c, G}(\text{Nat}(\mathbf{C}(-, c), \phi)(\vartheta))$. Since ϑ was arbitrary the diagram commutes. \square

Proof of naturality in c . Let $h : x \rightarrow y$ be a morphism in \mathbf{C} . We would like to show that

$$\begin{array}{ccc} \text{Nat}(\mathbf{C}(-, x), F) & \xrightarrow{\eta_{x, F}} & Fx \\ \text{Nat}(\mathbf{C}(-, h), F) \uparrow & & \uparrow F(h) \\ \text{Nat}(\mathbf{C}(-, y), F) & \xrightarrow{\eta_{y, F}} & Fy \end{array}$$

commutes.

Let $\vartheta \in \text{Nat}(\mathbf{C}(-, y), F)$ be arbitrary. Following the red path, $(F(h) \circ \eta_{y, F})(\vartheta) = F(h)(\vartheta_y(1_y))$.

By naturality of ϑ ,

$$\begin{array}{ccc} \mathbf{C}(x, y) & \xrightarrow{\vartheta_x} & Fx \\ \mathbf{C}(h, y) \uparrow & & \uparrow F(h) \\ \mathbf{C}(y, y) & \xrightarrow{\vartheta_y} & Fy \end{array}$$

So

$$\begin{aligned} F(h)(\vartheta_y(1_y)) &= (\vartheta_x \circ \mathbf{C}(h, y))(1_y) \\ &= \vartheta_x(1_y \circ h) \quad \text{By definition of } \mathbf{C}(h, y) \\ &= \vartheta_x(h) \end{aligned}$$

Keep in mind that $\text{Nat}(\mathbf{C}(-, h), F)$ precomposes ϑ with $\mathbf{C}(-, h)$. That is, $\vartheta \mapsto \vartheta \circ \mathbf{C}(-, h)$. Also, $\mathbf{C}(-, h)_a$ is a morphism $\mathbf{C}(a, x) \rightarrow \mathbf{C}(a, y)$, which takes a morphism $f \in \mathbf{C}(a, x)$ and composes it with h , that is $f \mapsto h \circ f$.

Now following the **blue** path,

$$\begin{aligned}
 & (\eta_{x,F} \circ \text{Nat}(\mathbf{C}(-, h), F))(\vartheta) \\
 &= \eta_{x,F}(\vartheta \circ \mathbf{C}(-, h)) && \text{See above paragraph} \\
 &= (\vartheta \circ \mathbf{C}(-, h))_x(1_x) && \text{By definition of } \eta_{x,F}, \text{ see Equation (1)} \\
 &= (\vartheta_x \circ \mathbf{C}(-, h)_x)(1_x) && \text{Composition of natural transformations} \\
 &= \vartheta_x(\mathbf{C}(-, h)_x(1_x)) \\
 &= \vartheta_x(h \circ 1_x) && \text{Definition of } \mathbf{C}(-, h)_x \\
 &= \vartheta_x(h)
 \end{aligned}$$

This completes the proof. □