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Abstract

Personal notes on the proof of the Yoneda lemma. This is the contravariant
version.

1 Notation
If C is a locally small category then we denote the hom set Home(z,y) by
C(z,y).

The notation C(—, z) is for the contravariant representable functor which takes
an object y to it’s hom set
y— Cly,x)

and a morphism A : y — z to the morphism of hom sets

C(h,z): C(z,2) = C(y, x)

Where if f € C(z,z), C(h,z)(f) = f o h (we call this precomposition by h)

Let h : * — y. The notation C(—,h) is for a natural transformation of
contravariant representable functors. Namely, C(—, h) : C(—,z) = C(—,y).

Given 2 set-valued functors F,G : C — Sets, we denote the set of natural
transformations between them by Nat(F,G)



2 The lemma

Theorem 2.1 (Yoneda Lemma). Let C be a locally small category. Then,
for any object x € C and contravariant set-valued functor F' : C°? — Sets,
there an isomorphism Nat(C(—,z), F') & Fxz. Moreover, this isomorphism
is natural in F', meaning the diagram below commutes:

Nat(C(y, ), F) —= Fy
Nat(C(y,a:),ﬁ)l lﬁy
Nat(C(y,z),G) —— Gy

o

and it is natural in z, meaning that

e

Nat(C(—, z), F) Fx
Nat(C(—,h),F)T TF(h)
Nat(C(—,y), F) —— Fy

IR

commutes given h : x — y, a morphism in C

It is highly recommended to pull out a pen and paper and follow along as there
are MANY different mathematical objects here. We section the proof into 4
parts, namely,

1. Defining the isomorphism and checking it is well defined
2. Checking it is bijective

3. Checking it is natural in F

4. Checking it is natural in ¢

With that in mind, let’s begin.

Construction of the isomorphism. Define
Ne,r - Nat(C(—, z), F) — Fz
as follows: Given a natural transformation ¥ € Nat(C(—, ), F'), we define
Na,# (V) = U2 (1e) (1)
Here, ¥, : C(x,2) — Fx is the morphism, and 1, € C(z,x). Now define
0zt Fox — Nat(C(—,z), F)

by taking any a € Fx to the natural transformation ¢, : C(—,z) — F where
each component of 1, (¥4), for z € C to be (¢,), : C(z,2) — Fz, taking
h € C(z,z) to F(h)(a). Symbolically,

(Ya). (h) = F(h)(a)



Checking that ¢, r is well defined is left as an exercise for the reader (just check
that the natural transformation produced is in fact a natural transformation) [

Proof of the bijection. We would like to check that ¢, r o 7, r is indeed the
identity on Nat (C(—, z), F'). Likewise, we need to check that 7, r o @, p is the
identity on F'z. Let’s do the first one. Let ¥ € Nat (C(—, z), F'). Now,

Px,F © Wm,F(ﬂ) = Sch,F(ﬁz(lr)) = 7/’1935(130)

Keep in mind that 1y, 1,y is a natural transformation C(—,z) — F, where

each component (1/}191(11))2 is a morphism of homsets C(z,2) — Fz, and if
h € C(z,z) then

(Yo.01,)), (h) = F(h)(9(12)) (2)
Now, since ¥ is natural, for our h € C(z, x), the following commutes:

C(z,2) 2 Fz

cwﬁ TF(h)

C(z,x) - Fx

Now, let’s choose the identity morphism 1, € C(x,x). Since the diagram
commutes, we know that (¥, o C(h,x)) (1) = (F(h) 0 ¥,) (1,). Referring back
to Equation (2) we can see that the right side is exactly (d)gm(lm))z (h). Now
let’s see what the left side is. Firstly, C(h,z)(1;) = 1, o h = h. Now this means
that (9, o C(h,x)) (1) = 9,(h). Since h was arbitrary (wﬁw(lw))z = v,. Since
z was also arbitrary this means 9y, (1,) = ¥.

Now let’s do the next one. This one is easier. Recall that at this point we wish
to check that 0, r o ¢, F is the identity on Fx. Let a € Fx be arbitrary. By
definition, ¢, p(a) = ¢,. Now by definition again 7, r(1q) = (¢4)2(1s). Recall
that (1q), takes h:ax — x to F(h)(a). Now, this means (¢,).(1,) = F(1.)(a).
Since F' is a functor F(1,) is the identity on Fx, so F(1,)(a) = a as desired. O

Proof of naturality in F. Let ¢ : F — G be a natural transformation. We would
like to prove that

Ne,F

Nat(C(—,¢),F) —— Fc

Nat(C(—,c),gﬁ)l Jibc

Nat(C(—,¢), G) > Ge

commutes. Again, recall that the morphism Nat (C(—, ¢), ¢) simply takes any
¥ € Nat (C(—, ¢), F') and composes it with ¢, that is ¥ — ¢ o). Now let’s check
this.



Let ¥ € Nat (C(—, ¢), F) be arbitrary. Now,

(¢c 0 Ne,r) (V)
= ¢c(nc,F(ﬂ))
= ¢c(Vc(1e)) By Equation (1)

By how composition of natural transformations is defined, ¢. o ¥, = (¢ 0 9),.
So this means that ¢.(9.(1.)) = (¢o9),(1.). The natural transformation
¢ o1 has codomain G, since ¢ is a natural transformation from F to G. Now
by definition of 7. ¢ we know that (¢o9).(1.) = ne,c (¢ o). Notice that
¢ o9 is really just Nat(C(—,c), #)(9). So combining all this together, we have
Ne,c (Nat (C(—, ¢), ¢) (9)). Since ¥ was arbitrary the diagram commutes. O

Proof of naturality in c. Let h : x — y be a morphism in C. We would like to
show that
Nat(C(—,z), F) % Fx
Nat(C(f./z).F)T P‘(h)
Nat(C(—,y), F) —“" Fy
commutes.

Let ¥ € Nat (C(—, y), F) be arbitrary. Following the red path, (F'(h) o n, r) (9) =
F(h) (9y(1y))-

By naturality of 4,

So

«(1y0h) By definition of C(h,y)

Keep in mind that Nat (C(—,h), F') precomposes ¢ with C(—,h). That is,
9 Yo C(—,h). Also, C(—, h), is a morphism C(a,z) — C(a,y), which takes
a morphism f € C(a,z) and composes it with h, that is f +— ho f.



Now following the blue path,

(n2,r 0 Nat (C(—, h), F)) (9)
= Ne.p (V0 C(=,h)

= (o C(=,h)), (1z)
= (0z 0 C(—,h)z) (12)
= m(C(*vh)r(lz))

)
9y (holy)
Uy ()

This completes the proof.

See above paragraph
By definition of 7, r, see Equation (1)

Composition of natural transformations

Definition of C(—, h),
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