

Chapter 9 Summary

Robert

March 2024

1 Adjoints

Definition 1.1. Let \mathbf{C}, \mathbf{D} be categories, and let $F : \mathbf{C} \rightarrow \mathbf{D}$ and $G : \mathbf{D} \rightarrow \mathbf{C}$ be functors. Then F is left adjoint to G and G is right adjoint to F , if we have the following situation:

$$\mathbf{D}(Fc, d) \cong \mathbf{C}(c, Gd)$$

(given objects $c \in \mathbf{C}$ and $d \in \mathbf{D}$). The isomorphism also has to be natural in c, d .

Intuitively it feels like adjoint functors have some kind of symmetry to them.

Example 1.2 (Riehl, Category Theory in Context). Let $U : \mathbf{Top} \rightarrow \mathbf{Sets}$ be the forgetful functor. Then U has a left and right adjoint. For a left adjoint of U , we need some functor $L : \mathbf{Sets} \rightarrow \mathbf{Top}$ such that $\mathbf{Sets}(UX, S) \cong \mathbf{Top}(X, LS)$ naturally. So we need to make a topological space from S such that every function $f : U(X) \rightarrow S$ corresponds to exactly one continuous function $\tilde{f} : X \rightarrow L(S)$. Since we know that any function out of a space with the discrete topology is continuous, we can let L take a set S to the topological space $(S, \mathcal{P}(S))$.

For the right adjoint, we can let R take a set S to $(S, \{\emptyset, S\})$, endowing it with the trivial topology. Since every function into a space with the trivial topology is continuous U, R are indeed adjoint. //

Forgetful functors often admit left adjoints. For example the functor taking a set to the free monoid on it is left adjoint to the forgetful functor from monoids to sets. The functor that takes a set to its free abelian group is also left adjoint to the forgetful functor from abelian groups to sets.

Adjoints can also be equivalently characterized by the following:

Definition 1.3. Let $F : \mathbf{C} \rightarrow \mathbf{D}$ and $G : \mathbf{D} \rightarrow \mathbf{C}$ be functors. Then F is left adjoint to G if there is a natural transformation $\eta : 1_{\mathbf{C}} \rightarrow G \circ F$ such that given any $c \in \mathbf{C}, d \in \mathbf{D}, f : c \rightarrow G(d) \in \text{Mor } \mathbf{C}$, there is a unique $g : Fc \rightarrow d \in \text{Mor } \mathbf{D}$ such that $f = G(g) \circ \eta_c$.

Here η is called the unit, and if we have $\phi : \mathbf{D}(Fc, d) \cong \mathbf{C}(c, Gd)$ natural, then we can obtain $\eta_c = \phi(1_{Fc})$, and $\phi(g) = G(g) \circ \eta_c$.

By duality, we can also get a counit, a natural transformation $\varepsilon : F \circ G \rightarrow 1_{\mathbf{D}}$ such that given any $c \in \mathbf{C}, d \in \mathbf{D}, g : Fc \rightarrow d \in \text{Mor } \mathbf{D}$, there is a unique $f : c \rightarrow Gd \in \text{Mor } \mathbf{C}$ such that $g = \varepsilon_d \circ F(f)$.

Example 1.4. Let \mathbf{C} be a category with binary products. Fix an object $A \in \mathbf{C}$. Then $(-) \times A$ is left adjoint to the exponential functor $(-)^A$. The counit here is what gives us the evaluation morphism. //

If a functor admits a left/right adjoint it is a natural question to wonder whether said left/right adjoint is unique. It turns out that they are.

Proposition 1.5 (Uniqueness of adjoints). *If $L : \mathbf{C} \rightarrow \mathbf{D}$ has right adjoints $R, S : \mathbf{D} \rightarrow \mathbf{C}$ then $R \cong S$. By symmetry this is also true for left adjoints.*

The proof of this proposition follows from applying the Yoneda principle to the fact that $\mathbf{C}(c, Rd) \cong \mathbf{C}(c, Sd)$ naturally.

There are also the adjoint functor theorems but I feel like I'm going to need quite a bit more time to understand it.