

Chapter 7 Summary

Robert

February 2024

1 Naturality

The main thing in this chapter is the concept of naturality.

Definition 1.1. Suppose we had $F, G : \mathbf{C} \rightarrow \mathbf{D}$ functors. Then a **natural transformation** $\eta : F \rightarrow G$ is a collection of morphisms $\{\eta_c\}_{c \in \mathbf{C}}$ for each object $c \in \mathbf{C}$ such that the following commutes:

$$\begin{array}{ccc} Fc & \xrightarrow{\eta_c} & Gc \\ Ff \downarrow & & \downarrow Gf \\ Fc' & \xrightarrow{\eta_{c'}} & Gc' \end{array}$$

1.1 Functor categories

Now that we have natural transformations, functors from fixed categories actually forms a category, denoted $\text{Fun}(\mathbf{C}, \mathbf{D})$, where the morphisms are natural transformations. The identity natural transformation 1_F is a collection of morphisms $\{1_F\}_{c \in \mathbf{C}}$ for each $c \in \mathbf{C}$ where $(1_F)_c = 1_{Fc}$, the identity morphism on the object Fc . Composition of natural transformations is given by $(\vartheta \circ \eta)_c = \vartheta_c \circ \eta_c$.

Example 1.2. Suppose we are in a category with products. Then $A \times B \cong B \times A$ naturally, by the natural transformation $t_{(A,B)} \circ \langle a, b \rangle = \langle b, a \rangle$. //

Example 1.3. Fix a field \mathbb{k} and consider finite dimensional vector spaces V over \mathbb{k} . A classic example is that $V \cong V^{**}$ naturally. For each $V \in \text{Vect}(\mathbb{k})$, define η_V to be the map $v \mapsto (\epsilon_v : V^* \rightarrow \mathbb{k})$ where ϵ is the evaluation map, that is given a linear functional $f \in V^*$, $f : V \rightarrow \mathbb{k}$, $\epsilon_v(f) = f(v)$. Now call the collection of all such η_V 's η . Then η is a natural transformation from $1_{\text{Vect}} \rightarrow (-)^{**}$. //

Importantly now since functors between fixed categories form a category we can see that **Cat** is a CCC.

Theorem 1.4. **Cat** is cartesian closed, where $\mathbf{D}^{\mathbf{C}}$ is $\text{Fun}(\mathbf{C}, \mathbf{D})$

2 Monoidal categories

Joke 2.1. *A monad is a monoid in the category of endofunctors, what's the problem?*

An endofunctor is a functor where the domain and codomains are the same. Fix a category \mathbf{C} and consider the category of endofunctors of \mathbf{C} . Now define $G \otimes F = G \circ F$ for endofunctors G, F . To define $\alpha \otimes \beta$, where $\alpha : G \rightarrow G'$, $\beta : F \rightarrow F'$ are natural transformations, let $c \in \mathbf{C}$ be an arbitrary object and define a morphism $GF(c) \rightarrow G'F'(c)$ by taking $G'(\beta_c) \circ \alpha_{F(c)}$ (or equivalently, $\alpha_{F'(c)} \circ G(\beta_c)$). The collection of such morphisms forms a natural transformation: $\alpha \otimes \beta : GF \rightarrow G'F'$.

3 Equivalence of categories

Equivalence of categories captures in the intuitive notion that some categories are "kind of the same".

Definition 3.1. Suppose we had categories \mathbf{C}, \mathbf{D} . Then $\mathbf{C} \simeq \mathbf{D}$ if we have natural isomorphisms $\alpha : 1_{\mathbf{C}} \rightarrow FE$ and $\beta : 1_{\mathbf{D}} \rightarrow EF$

A noteworthy property is that if F is part of an equivalence of categories then it's full and faithful. It's also essentially surjective on objects, meaning for every object in the codomain of F , there is an object in the domain such that applying F to this object is isomorphic to that object.