

1 Pullbacks

Definition 1.1. Suppose we had morphisms $f : A \rightarrow C$ and $g : B \rightarrow C$. Then the pullback of f and g is a pair of arrows $p_1 : P \rightarrow A$ and $p_2 : P \rightarrow B$ such that $fp_1 = gp_2$, and given any $z_1 : Z \rightarrow A$ and $z_2 : Z \rightarrow B$ such that $z_1 = p_1u, z_2 = p_2u$, there is a unique $u : Z \rightarrow P$ such that $z_1 = p_1u$ and $z_2 = p_2u$

Pullbacks are unique, so we can denote the pullback of C as $A \times_C B$

Proposition 1.2. Suppose C has products and equalizers. Suppose we had morphisms $f : A \rightarrow C$ and $g : B \rightarrow C$. Then if $A \times B$ is the product of A and B , and E is an equalizer of $f\pi_1$ and $g\pi_2$, where $\pi_1 = \pi_1e, \pi_2 = \pi_2e, \pi_1, \pi_2$ is a pullback of f, g .

Lemma 1.3 (Two pullback lemma). This diagram takes a long time to draw. Basically, if the 2 squares are pullbacks, the outer rectangle is a pullback. If the right square and outer rectangle are pullbacks, then the left square is too

Corollary 1.4. The pullback of a commutative triangle is a commutative triangle

2 Limits

Definition 2.1. Let J, C be categories. Then a diagram of type J in C is a functor $D : J \rightarrow C$.

Definition 2.2 (Objects in the cone category). A cone to a diagram D is an object, $C \in C$ and a collection of morphisms, $\{c_j\}, c_j : C \rightarrow D_j$ such that for every $\alpha : i \rightarrow j$ in J , $D_\alpha c_i = c_j$.

Definition 2.3 (Morphisms in the cone category). A morphism of cones $\vartheta : (C, \{c_j\}) \rightarrow (C', \{c'_j\})$ is a morphism $\bar{\vartheta} : C \rightarrow C'$ in C such that for every $j \in J$ we have $c_j = c'_j \bar{\vartheta}$.

Definition 2.4. If $D : J \rightarrow C$ is a diagram, then a limit for D is a terminal object in the category of cones to D . If J is finite then the limit is called a finite limit.

The limit object would be denoted $\lim_{\leftarrow j} D_j$. It of course comes with a family of morphisms $\{p_i\}$ such that $p_i : \lim_{\leftarrow j} D_j \rightarrow D_i$. This object has the property that for any cone $(C, \{c_j\})$ to D , there is a unique $u : C \rightarrow \lim_{\leftarrow j} D_j$ such that for every $j \in J$ we have $p_j \circ u = c_j$.

We can now view products as a limit. Let \mathbf{J} be the discrete category with 2 objects, 2 morphisms (which both have to be identities). Then $D : \mathbf{J} \rightarrow \mathbf{C}$ is a pair of objects $D_1, D_2 \in \mathbf{C}$. A cone of D is a object $C \in \mathbf{C}$ together with morphisms $c_i : C \rightarrow D_i$. A limit of D would be a terminal cone, but this exactly coincides with the product.

Now we can construct equalizers with limits. Let \mathbf{J} be the category with 2 objects, 1, 2 and morphisms $\alpha, \beta : 1 \rightarrow 2$ (of course the objects would need identity morphisms too but ignore those). Then a diagram of type \mathbf{J} would be 2 objects: D_1, D_2 and morphisms $D_\alpha, D_\beta : D_1 \rightarrow D_2$. A cone would be $c_i : C \rightarrow D_i$ such that $D_\alpha c_1 = c_2 = D_\beta c_1$, so a limit for D would be an equalizer of D_α, D_β .

3 Continuity

Definition 3.1. Let $F : \mathbf{C} \rightarrow \mathbf{D}$ be a functor. Then F preserves limits of type J if given a diagram $D : \mathbf{J} \rightarrow \mathbf{C}$ and a limit $p_j : L \rightarrow D_j$ then the cone $F(p_j) : F(L) \rightarrow F(D_j)$ is a limit for the diagram $F(D) : \mathbf{J} \rightarrow \mathbf{D}$. If F preserves all limits, it is continuous.

Proposition 3.2. Let C be a locally small category. Then the representable functors $\text{Hom}(C, -)$ is continuous.

Weird that this definition is being introduced now but not in duality but:

Definition 3.3. Let \mathbf{C}, \mathbf{D} be categories. Then $F : \mathbf{C}^{\text{op}} \rightarrow \mathbf{D}$ is a contravariant functor on \mathbf{C} , where if $f : A \rightarrow B$ is a morphism in \mathbf{C} then it is mapped to $F(f) : F(B) \rightarrow F(A)$, and $F(g \circ f) = F(f) \circ F(g)$

Honestly I did not really understand the colimit part

Definition 3.4. A pushout is a pullback where you flip all the arrows and that's what it is and I don't want to draw the commutative diagram because it takes too long

Example 3.5. Let S^1, D^2 be as defined in topology. Then S^2 is the pushout of 2 of the same inclusion map $i : S^1 \rightarrow D^2$. //