

Abelian Categories

Robert

April 11 2024

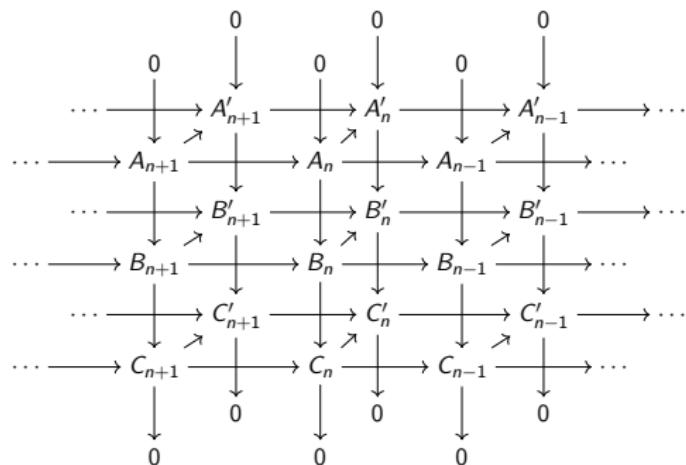


Table of Contents

Motivation

Definitions

Chain complexes and exact sequences

Properties of Abelian categories

Transformations between Abelian categories

Diagram lemmas

Freyd-Mitchell Embedding Theorem

Homological Algebra

Traditionally, we do homological algebra within categories such as **Ab** and **Mod** $_R$ (this means left R -modules). Abelian categories are a generalization of what makes these categories so nice to do homological algebra in.

Definition

A category \mathcal{C} is called *additive* if

1. $\mathcal{C}(a, b)$ is an abelian group, where composition distributes over addition.
2. There is an object that is both initial and terminal. We call this the *zero object*.
3. \mathcal{C} has binary products (and thus finite ones)

Definition

A category \mathcal{A} is called *abelian* if

1. It is an additive category.
2. Every morphism has a kernel and a cokernel
3. Every monomorphism is a kernel, every epimorphism is a cokernel

The kernel of f is defined to be the equalizer of f and 0. The zero morphism $0 : A \rightarrow B$ is obtained by taking the composition $A \rightarrow 0 \rightarrow B$.

Examples of abelian categories

- ▶ Category of abelian groups.

Examples of abelian categories

- ▶ Category of abelian groups.
- ▶ Category of left R -modules.

Examples of abelian categories

- ▶ Category of abelian groups.
- ▶ Category of left R -modules.
- ▶ The category of chain complexes on an abelian category.

Examples of abelian categories

- ▶ Category of abelian groups.
- ▶ Category of left R -modules.
- ▶ The category of chain complexes on an abelian category.
- ▶ **LCA** is unfortunately not abelian.

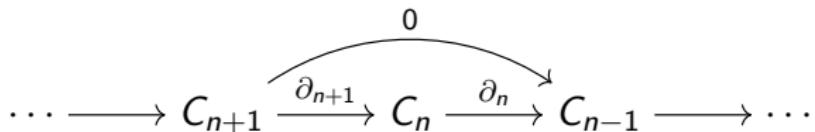
Chain complexes

Definition

Let \mathcal{A} be an abelian category. A *chain complex* in \mathcal{A} is a sequence of objects (C_n) and a sequence of morphisms (∂_n) where $\partial_n : C_n \rightarrow C_{n-1}$ and it has the property that $\partial_{n+1} \circ \partial_n = 0$

$$\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \longrightarrow \cdots$$

0



We denote this as (C_n, ∂) .

Category of chain complexes

Chain complexes from an abelian category \mathcal{A} form the objects in the category of chain complexes on \mathcal{A} . The morphisms in this category are sequences of morphisms (f_n) such that squares commute like so

$$\begin{array}{ccccccc} \cdots & \longrightarrow & C_{n+1} & \xrightarrow{\partial_{n+1}} & C_n & \xrightarrow{\partial_n} & C_{n-1} \longrightarrow \cdots \\ & & \downarrow f_{n+1} & & \downarrow f_n & & \downarrow f_{n-1} \\ \cdots & \longrightarrow & C'_{n+1} & \longrightarrow & C'_n & \longrightarrow & C'_{n-1} \longrightarrow \cdots \end{array}$$

and we write $(C_n, \partial) \rightarrow (C'_n, \partial')$.

Exact sequences

$$\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \longrightarrow \cdots$$

We say that a sequence (C_n, ∂) is *exact at C_n* if $\text{im } \partial_{n+1} = \ker \partial_n$.
The image of a morphism $f : A \rightarrow B$ is defined to be $\ker(\text{coker } f)$.

Short exact sequences

A *short exact sequence* is a sequence of the form

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

which is exact at A, B, C .

Properties of Abelian categories

- ▶ \mathcal{A} is abelian if and only if \mathcal{A}^{op} is.

Properties of Abelian categories

- ▶ \mathcal{A} is abelian if and only if \mathcal{A}^{op} is.
- ▶ Given any morphism f , we can factor it like $f = me$ where m is monic and e is epic.

Properties of Abelian categories

- ▶ \mathcal{A} is abelian if and only if \mathcal{A}^{op} is.
- ▶ Given any morphism f , we can factor it like $f = me$ where m is monic and e is epic.
- ▶ If f is both epi and monic, it is an isomorphism. Compare this with the category of abelian groups, and R -Mod.

Properties of Abelian categories

- ▶ \mathcal{A} is abelian if and only if \mathcal{A}^{op} is.
- ▶ Given any morphism f , we can factor it like $f = me$ where m is monic and e is epic.
- ▶ If f is both epi and monic, it is an isomorphism. Compare this with the category of abelian groups, and R -Mod.
- ▶ Given a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, if $f : A \rightarrow B$ and $g : B \rightarrow C$ then we have f monic and g epi.

Exact functors

Definition

A functor F is *left-exact* if the sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C$ being exact implies that the sequence $0 \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(C)$ is exact. A functor being *right-exact* is defined similarly.

Exact functors

Definition

A functor F is *left-exact* if the sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C$ being exact implies that the sequence

$0 \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(C)$ is exact. A functor being *right-exact* is defined similarly.

A functor that is both left and right exact is called exact.

Exact functors

Definition

A functor F is *left-exact* if the sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C$ being exact implies that the sequence

$0 \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(C)$ is exact. A functor being *right-exact* is defined similarly.

A functor that is both left and right exact is called exact.

There are many equivalent definitions of exact functor.

Examples of exact functors

- ▶ Any equivalence of categories is exact.

Examples of exact functors

- ▶ Any equivalence of categories is exact.
- ▶ The covariant hom functor into abelian groups is left-exact.
The contravariant one is right-exact.

Diagram lemmas

- ▶ Five lemma
- ▶ Snake lemma

Definition

Given $x, y \in_m a$, define $x \sim y$ if and only if there are epis u, v such that $xu = yv$.

Definition

Given $x, y \in_m a$, define $x \sim y$ if and only if there are epis u, v such that $xu = yv$.

The symbol \in_m is chosen purposefully for intuition.

Abelian categories are intuitive

Theorem

Let \in_m denote membership in an abelian category.

1. $f : a \rightarrow b$ is monic if and only if for all $x \in_m a$, $fx \sim 0$ implies that $x \sim 0$;
2. $f : a \rightarrow b$ is monic if and only if for all $x, x' \in_m a$, $fx \sim fx'$ implies $x \sim x'$;
3. $g : b \rightarrow c$ is epi if and only if for every $z \in_m c$ there exists a $y \in_m b$ such that $gy \sim z$;
4. $h : r \rightarrow s$ is zero if and only if for all $x \in_m r$, $hx \sim 0$;
5. A sequence $a \xrightarrow{f} b \xrightarrow{g} c$ is exact at b iff $gf = 0$ and for every $y \in_m b$ such that $gy \sim 0$ there exists $x \in_m a$ so that $fx \sim y$;
6. Given $g : b \rightarrow c$ and $x, y \in_m b$ with $gx \sim gy$, there is some $z \in_m b$ such that $gz \sim 0$; and if any $f : b \rightarrow d$ is such that $fx \sim 0$ then we have $fy \sim fz$, additionally, if $h : b \rightarrow a$ is such that $hy \sim 0$ we have $hx \sim -hz$.

Five Lemma

Lemma (Five lemma)

$$\begin{array}{ccccccc} A_1 & \xrightarrow{g_1} & A_2 & \xrightarrow{g_2} & A_3 & \xrightarrow{g_3} & A_4 & \xrightarrow{g_4} & A_5 \\ \downarrow f_1 & & \downarrow f_2 & & \downarrow f_3 & & \downarrow f_4 & & \downarrow f_5 \\ B_1 & \xrightarrow{h_1} & B_2 & \xrightarrow{h_2} & B_3 & \xrightarrow{h_3} & B_4 & \xrightarrow{h_4} & B_5 \end{array}$$

Suppose the rows are exact, and f_1, f_2, f_4, f_5 are isomorphisms.
Then f_3 is an isomorphism.

Freyd-Mitchell

Theorem (Freyd-Mitchell Embedding Theorem)

Let \mathcal{A} be a small Abelian category. Then there is a ring with unity R and a functor $F : \mathcal{A} \rightarrow \mathbf{Mod}_R$ (left R -module category) such that F is full, faithful and exact.

Snake lemma with Freyd-Mitchell

$$\begin{array}{ccccccc} & F(\ker \alpha) & \longrightarrow & F(\ker \beta) & \longrightarrow & F(\ker \gamma) & \\ & \downarrow & & \downarrow & & \downarrow & \\ 0 & \longrightarrow & F_a & \xrightarrow{Fm} & F_b & \xrightarrow{Fe} & F_c \longrightarrow 0 \\ & & \downarrow F\alpha & & \downarrow F\beta & & \downarrow F\gamma \\ 0 & \longrightarrow & F_a' & \xrightarrow{Fm'} & F_b' & \xrightarrow{Fe'} & F_c' \longrightarrow 0 \\ & & \downarrow & & \downarrow & & \downarrow \\ & F(\text{coker } \alpha) & \longrightarrow & F(\text{coker } \beta) & \longrightarrow & F(\text{coker } \gamma) & \end{array}$$