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Abstract

We aim to give a brief overview on the theory of abelian categories and draw a comparison with the
usual tools of homological algebra, which is often studied in the categories Ab and Modg. Additionally,
we discuss the Freyd-Mitchell embedding theorem and some shortcomings of the theorem.



1 Introduction

Classically, homological algebra was done in categories such as Ab and R-Mod. Abelian categories are in a
sense, the most general category in which homological algebra can be done within. The axioms of an abelian
category give us just enough to do homological algebra in. With that, let’s dive right in with some definitions.

Definition 1.1. An additive category is a category € such that
1. Given any 2 objects A, B € obj €, C(A, B) forms an abelian group.
(a) Let f,g: A— B. If h: B — C' is some other morphism, then we have ho(g+ f) = hog+ho f

2. There is an object 0 € objC, which is both initial and terminal. This object is called the zero
object.

3. Given any 2 objects A, B, the product of A and B is also in € (and thus by induction, we have
finite products).

Note that when we say C(A, B) is an abelian group, the additive identity is the morphism 0 : A — B, which
is obtained by factoring through the zero object: A — 0 — B.

Now another definition, which we will use pretty often.

Definition 1.2. The kernel of f, is the equalizer of f and 0.

It is easy to see that this definition is only valid in categories with a 0 morphism. Since the kernel is given by
a universal property (equalizers), it is unique up to isomorphism. Cokernels are dually defined by taking the
coequalizer of f and 0.

Finally we can define an abelian category.

Definition 1.3. An abelian category C is an additive category with additional properties:
1. Given any f € mor €, we can form ker f.
2. Given any f € mor C, we can form coker f.
3. If f € mor € is a monomorphism, it is the kernel of some morphism.
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. If f € mor € is an epimorphism, it is the cokernel of some morphism.

Taking a look at some examples of abelian categories will provide some insight into why these axioms are
formulated as such. Unsurprisingly, the categories in which we do homological algebra are abelian categories.
Example 1.4 (Category of (left) R-modules). Let R be a ring (with unity). Let € = Modg, the category of
(left) R-modules. Then € is an abelian category. It’s not too hard to see that € is an additive category, where
the abelian group structure of C(M, N) is provided by pointwise addition in N. Now kernels and cokernels
are just the usual definition of kernels and cokernels of modules. /
Example 1.5 (The category Ab). The category of abelian groups, Ab is an abelian category. Intuitively this
makes sense because it’s the category of abelian groups. But let’s actually see why. Firstly Ab is additive:
the abelian group structure Hom (G, H) is inherited from H, we can form products, and we have the trivial
group serving as the 0 object. From here, it’s not too hard to see why the category is abelian. Let f : G — H
be a group homomorphism. ker f is formed in the usual way: the set of elements that are mapped to 0 by f.
coker f is formed by taking H/im f. /

The following examples are constructions of abelian categories from other abelian categories.

Example 1.6 (Fun(g,€)). If C is a (small) abelian category, then Fun(d, €) is an abelian category too. This
situation is very similar to how the group structure of G can be inherited by Hom(S, G) if S is any set, by
simply defining the operations pointwise. /
Example 1.7 (Category of chain complexes). Given an abelian category A, the category of chain complexes
on A is also an abelian category. We define a chain complex to be a sequence of objects (C;,) and a sequence



of morphisms (9,,)

On+1 On
i3 Oyl /5 C s Oy —— -+

such that 9, 0 9,41 = 0. We write this as (C,,d). These are objects in the category of chain complexes.
A morphism in the category of chain complexes is a sequence of morphisms f, : C,, — C!, such that the
following diagram commutes.

On+1 On
i Cp1 — Oy~ Oy —— - - -

J/fn«{»l lfn lfﬂ.—l

e—C g —C —C ) —— -

n—1

Consider chain complexes (C,,d) and (C/,9"). If f, g are morphisms from C,, to C/,, we have morphisms
frsgn : Cp — Cl in A, which can evidently be added together. Indeed, we can see that 9, o (f, + gn) =
On © fn+ On o gn = fnt1 00, + gnt1 © 0, which is as desired. The other properties are also easy to verify.
For example, the kernel of f in the category of chain complexes is a sequence of kernels ker f,, for each f, in

A. /
Example 1.8 (Sheaves). If X is a topological space, the category of all sheaves of abelian groups on X is
an abelian category. Sheaves are not discussed in this report but we shall leave exposition about sheaves to

Tamis. /
1.1 Exact sequences and homology

Let us begin by recalling the definition of an exact sequence with the more familiar category of abelian groups.

Definition 1.9. A sequence of abelian groups (G,,) is exact at Gy, if im Jy1 = ker 0.

Ok+1 2]
o Gl — = G — Gy —— -

A chain complex (C,,, d) is said to be exact if it is exact at every C,,.

An example of a chain complex is taking free abelian group with basis the singular n-simplexes on a topological
space X.

For an abelian category, it is the same definition, only instead of abelian groups, we have objects in an abelian
category. But first, we need to define what an image is. If f : A — B is a morphism, then we can define
im f = ker(coker f).

Definition 1.10. A short exact sequence is a sequence

0—s A1 B2 y0c— 0

which is exact at A, B, C.

Equivalently, we can say that a sequence is short exact if f = ker g and g = coker f.

Now we can talk about homology. If i : A — B is a monomorphism, then we can define the quotient of B by
A, denoted B/A as cokeri. This agrees with the usual definition of quotient in abelian groups and modules.

Definition 1.11. Given a chain complex (C,,, d), the n-th homology object, denoted H, (C), is defined as
ker 0,/ im Oy, 1.

The idea of homology is that it measures how much a sequence deviates from being an exact sequence. Indeed,
(Cn, 0) is exact if and only if the nth homology is zero for every n. An example of an exact sequence is the
chain complex taken on a point (] , Prop 2.8]).

We do not discuss homology much in the report, but it is included here for completeness.



2 Basic facts

It is helpful to see some properties of abelian categories. Most proofs are omitted since they are unsightful.
Proposition 2.1. C is an abelian category if and only if C°P is an abelian category.

Proposition 2.2. If A is an abelian category and f is a morphism in A, then f can be factored as f = me,
where m is monic and e s epi. Moreover, m = ker(coker f) and e = coker(ker f).

Proposition 2.3. g is monic if and only if g = ker(coker g). Dually, g is epi if and only if g = coker(ker g)
Proposition 2.4 ([ D). In an abelian category, if f is epi and monic, then f is an isomorphism
Proposition 2.5. In an abelian category, given the pullback of f and g, if f is epi, then so is f'

bx.d —1s

v|
b

O
Q

f

Now, a few properties about exact sequences in abelian categories.
Proposition 2.6. If

0—s AT sB 20—

1s short exact, then [ is a monomorphism and g is an epimorphism.
Proposition 2.7. Given the pullback square as in Proposition 2.5, k factors through the kernel of f’, denoted
k', such that k = g'K'.

O%a——k,—»bxcd#d
g'l Jg
a k b 7 c

Of course, we are all pretty familiar with sets and taking elements of them to do proofs. The following theorem
tells us that our intuition from sets carries over, and justifies the use of the €,, notation for membership.
But first a definition.

Definition 2.8. If z is a morphism with codomain a, then x is a member of a, denoted x €,, a. Given

Z,Y Em a, define x ~ y if and only if there are epis u, v such that zu = yv.

The relation ~ as defined is an equivalence relation, but the proof of this fact is omitted as it is not insightful
(to prove the transitivity of ~ we use Proposition 2.5, see | , D- 204])

Theorem 2.9. Let €, denote membership in an abelian category.
1. f:a — bis monic if and only if for all x €,, a, fr ~ 0 implies that = ~ 0;
2. f:a — bis monic if and only if for all z,z" €,, a, fxr ~ fx’ implies z ~ z;
3. g:b— cisepiif and only if for every z €,, c there exists a y €,, b such that gy ~ z;
4

. h:r — sis zero if and only if for all x €,, 7, hx ~ 0;

5. A sequence a Ly b5 cis exact at b iff gf =0 and for every y €,, b such that gy ~ 0 there exists
T €, a so that fz ~y;

6. Given g : b — ¢ and z,y €, b with gx ~ gy, there is some z €, b such that gz ~ 0; and if any
f:b— dis such that fx ~ 0 then we have fy ~ fz, additionally, if h : b — a is such that hy ~ 0
we have hx ~ —hz.

Properties 1-3 are extremely similar to the usual definition of injectivity and surjectivity with sets and
functions. Property 4 is reminiscent of how we can show that a function is the zero map by simply checking
that it evaluates to zero on every single element. Property 5 is comparable with the "usual” way exactness



behaves in concrete categories. In concrete categories g o f = 0 immediately implies that im f C ker g, and
for exactness we would have the following property: given any y € ker g = im f, there is some x € a such
that f(z) = y. The last property is meant to replace subtraction in abelian groups [ ]

Proof. Properties 1 and 2 follow immediately from the definition of monic. For property 3, take the pullback
of g and z. Then we have the following situation:

SLO
|
b c

Since ¢ is epi, ¢’ is epi by Proposition 2.5 and thus gyl, = z¢’, so we have gy ~ z. Property 4 follows
immediately. Properties 5 and 6 are omitted. O

9

3 Classic diagram lemmas

When doing homological algebra, there are a few diagram lemmas. The more well known ones include the five
lemma, and the snake lemma. These lemmas hold in Ab and Mod g, which one can find proofs of in almost
any textbook on homological algebra. We shall give a proof of these lemmas in an arbitrary abelian category.
Lemma 3.1 (Five lemma).

Al g1 A2 g2 A3 g3 A4 g4
J{fl J{fz J{f3 J{fz;
B Bs Bs B,

h1 ha hs hy

As
s
Bs

Suppose the rows are exact, and f1, fa, f4, f5 are isomorphisms. Then f3 is an isomorphism.

The hypotheses can be weakened slightly. Indeed, we only need f; epi and f5 monic instead of them being
isomorphisms.

Now let us see a proof using the methods of Theorem 2.9.

Proof. We shall prove that fs is monic by using Theorem 2.9 part 1 (and apply duality to get that it is
epi). Pick = €,, Az, such that fsz ~ 0. Then fygsx = hsfsx ~ h30 = 0 so figsz ~ 0. Since f; is monic
we have gzx ~ 0. Since we are exact at As, apply part 5 of Theorem 2.9, there is some y €,, Az such that
goy ~ x. Then 0 ~ fyx ~ f3goy ~ hafoy. By exactness at By and the fact that foy €, By there is some
y' €m Bi such that hiy’ ~ foy. Since fi is epi, there is some z €,, A; such that f1z ~ ¢y’ and so we have
h1fiz ~ foy. Since hy f1z = fogi1z we have fogi1z ~ foy. Since fo is monic we have g;z ~ y. Since we have
shown above that x ~ goy, and goy ~ g2g12z ~ 0 as gog1 = 0. This shows x is zero. Now since z is arbitrary,
by Theorem 2.9 part 1 we see that f3 is monic. O

Notice how the proof is very similar to doing it in the category of abelian groups, by picking some element in
the kernel and chasing it around.
Lemma 3.2 (Snake lemma). Consider

0 A B C 0
[ P P
0 D E F 0

where the rows are exact, and all the squares commute. Then, there exists an exact sequence

0 — kera — ker 8 — kery — coker @« — coker § — cokery — 0



Proof Sketch. By universal property of kernels and cokernels, we already have

0 ker v ker 3 ———— ker~y

coker « —— coker 5 —— cokery —— 0

The morphisms between the kernels and cokernels are unique and the sequence is exact. The hard part of
this proof is finding the connecting morphism ker~y — coker a. We do so by examining the following diagram

[Cre21].

ker 8
1 q
Ir
\L
P
0 D E xpkery —— kery —— 0
[ P
// p1 // ji
0 D — E —= F 0
s e p
«a // - /B Y
% 7
0 A —~ B - C 0
¥ P
X o
"

coker « —— coker 3

The sequence 0 — D — E X kery — kery — 0 is exact by Proposition 2.7. Now, p’8p; = vjpe = 0, since
~vj = 0. So there is a unique f (in red) such that i’ f = 8p;. Since the top row is exact, D — F X g ker+y is
the kernel of py. Additionally, ko = 0, so we may define 0 to be the unique morphism such that dpy = kf.
This is what we are looking for. The only thing left to do is to verify the exactness of the sequence found. [

4 Transformations between abelian categories

A functor that preserves the abelian category structure is called an exact functor. From the name, we
can guess that an exact functor is a functor that preserves exact sequences. There are multiple equivalent
definitions of exact functors, this one is from | ].

Definition 4.1. Let A, B be abelian categories. A functor F': A — B is exact if it preserves finite limits
and colimits.

Now we can have a look at some functors which are left exact or exact.
Example 4.2. If A is equivalent to B (both are abelian categories), then the functors connecting them are

exact. /
Example 4.3 (Representable functors). Given an abelian category A and a € obj A, Hom(a,—) : A — Ab
is a (covariant) left-exact functor. a is projective if and only if Hom(a, —) is exact | , Prop 3.9]. The

contravariant version of that functor is right-exact and is exact if and only if a is injective (by duality). /
Example 4.4. In the category of vector spaces over a fixed field, the dual functor is a contravariant exact
functor. /

We will also quickly define what it means for functors to be left and right exact.

Definition 4.5. A functor F' is left-exact if the sequence 0 — A —— B —— C being exact implies that
the sequence 0 — F(A) — F(B) — F(C) is exact. A functor being right-ezact is defined similarly.

A left exact functor preserves kernels, and a right exact functor preserves cokernels.



Proposition 4.6. The following are equivalent:
1. F is exact
2. ker(Ff) = F(ker f) and coker(Ff) = F(coker f)
3. F is additive and preserves kernels and cokernels.
4. F is left and right exact

For a proof of these equivalences, see | ] and | ].

5 Embedding theorem

A discussion about abelian categories would not be complete without this embedding theorem. Essentially,
this theorem tells us that we can prove facts about abelian categories in Mlod g and then use those to recover
the desired morphisms. This theorem is somewhat useful and some authors quite like this. For instance,
[ ] recommends proving diagram lemmas in the category of R modules first and applying the embedding
theorem.

Theorem 5.1 (Freyd-Mitchell Embedding Theorem). Let A be a small abelian category. Then, there is a
ring with unity R and a functor F' : A — Modg such that F' is full, faithful and exact.

This theorem is nice because it saves some work: One can simply prove results in Modg and apply the
Embedding theorem to translate it. As an example, let’s see how this works by proving the snake lemma

using the embedding theorem.

Proof of Lemma 3.2 by embedding theorem. By the embedding theorem, we have a ring with unity R and a
fully faithful exact functor F : A — Modg. Now, take F' and apply it to our exact sequences’

F(kera«) —— F(ker 8) —— F(ker~)

| | |

0 Fa £m Fb Fe Fe 0
lFa lFﬂ lF"/
00— Fd Em’ Fif Fe! Fe 0

| | |

F(coker &) —— F(coker f) —— F'(coker~)

The above diagram is in the category Modpg and since F' is exact, the rows are all exact. Thus the snake
lemma applies and we have a homomorphism 0 : F(kery) — F(coker ). Since F' is fully faithful, there is a
unique morphism 0 from ker to coker a such that F(9) = 9. This completes the proof. O

However this theorem is not all flowers and roses. Firstly, this theorem doesn’t preserve projective and
injective objects. In particular, taking the category of finitely generated Z-modules (abelian groups) as given
here in | .

Secondly, it really only works on small abelian categories (as part of the hypothesis).

Finally, we also established in Section 3 that we can prove some of our diagram lemmas without the embedding
theorem. In fact all of the diagram lemmas can be proven without appealing to the embedding theorem, and
there aren’t any well known results that rely on the embedding theorem | ]. Using Theorem 2.9 we can
adapt proofs in the category of abelian groups or R-Mod to a general abelian category.

1We first obtain the morphisms between the kernels and cokernels within the abelian category itself. It is possible to just get
these in the category we embedded into as well, but I find that the proof this way is slightly cleaner.
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