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What is Homology

Homology is a way to associate sequences of algebraic objects with
other mathematical objects. In this presentation, we will only
concern ourselves with associating abelian groups to topological
spaces.
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Motivation

The motivation for homology comes from being able to tell
topological spaces from each other. Imagine a cup and a donut.
How do we know these topological spaces are not the same as each
other? Intuitively, a cup has no holes, but a donut has a hole.
Homology gives us a rigorous way to identify holes in a topological
space.
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Notation

We will heavily abuse notation, and denote the trivial group and
trivial homomorphism with 0.
Note that the equality sign will mean both equality and
isomorphism. For example, 〈2〉 = Z
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Simplicial Complexes

Simplicial complexes are a generalization of triangles. We’ll denote
an n simplex with the following notation:

[v0, v1, . . . , vn]

Where vi are vectors in Euclidean space. Note that the ordering of
the vertices does matter. In particular, if i < j then [vi , vj ] is an
edge where you go from vi to vj . −[vi , vj ] means you go from vj to
vi . An example will be given in the next slide.
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In this case, the direction [v0, v1] is depicted by that arrow in the
figure. Imagine you are an ant. So you start from v0 and walk to
v1. The direction of [v1, v2] is also depicted by the arrow in the
figure. Likewise with [v0, v2].

v0

v1

v2

Figure: A standard 2-simplex
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Standard n-simplex

A standard 3-simplex is a tetrahedron (triangular pyramid). We
now give the definition of the standard n-simplex, ∆n, which is
simply the collection of unit n + 1 vectors in Rn+1.

∆n = { v = (x0, . . . , xn) ∈ Rn+1 | ||v || = 1, ti ≥ 0 }

Of course, it is intuitively clear that the standard n-simplex is
homeomorphic to any other n-simplex. We won’t prove this here,
but you can see [Hat02] for a proof.
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Face of simplex

A face of an n-simplex is just an n − 1-simplex, where you just
delete one of the vertices. If the ith vertex is deleted we denote it
like

[v0, . . . , v̂i , . . . , vn]

For example, if we write [v0, v̂1, v2], it is the same as writing
[v0, v2]. Intuitively, if we delete a vertex from a standard 2-simplex,
we get a line. This makes much more intuitive sense when you
consider that the faces of a standard 3-simplex are 2-simplexes,
which are triangles. Indeed, triangles make up the faces of a
tetrahedron.
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v0

a

v1

b
v2

c

Figure: Faces of 2-simplex

In this picture, we can see that the faces of our 2-simplex are
[v̂0, v1, v2], [v0, v̂1, v2] and [v0, v1, v̂2] which correspond to c, b, a
respectively, in that order.
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∆ complexes

Let X be a ∆-complex. Intuitively, ∆-complexes are just spaces
made unions of standard n-simplexes, where you identify certain
faces together.
Formally, what this means is that X can be constructed as the
quotient space of a disjoint union of n-simplexes ∆n

α, with maps
σα : ∆n → X which identify ∆n with each ∆n

α. A good overview
of quotient spaces has been covered in excellent presentation given
by Mark on Friday Nov 24 at 3pm.
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Free groups

Let S be a set of symbols. The free group on S, denoted FS is the
set of all finite length strings of characters on S and the inverses.
For example, if S = { a, b }, then aba−1b−1 is an element of S. If
a character occurs with its inverse, it is the empty string. For
instance, aa−1b = ab.
If it is a free abelian group, ab = ba. This is much simpler to deal
with. So, if S = { a1, . . . , an } then

FAb(S) = { k1a1 + · · ·+ knan | ki ∈ Z }

Basically the free abelian group on S is just all the linear
combinations of the elements of S.
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Define Cn to be the free abelian group with basis the n-simplexes
of X .1.

v0

a

v1

b
v2

c

Figure: ∆-complex made from 3 1-simplexes

For example, consider this ∆-complex made of 3 1-simplexes
(lines). Then, C0 = FAb(v0, v1, v2),C1 = FAb(a, b, c) and C2 and
above are all trivial since there are no 2-simplexes and so on.

1We are abusing notation from singular homology here, because it is easier
to typeset. Hatcher actually calls this ∆n(X)
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Motivation of homology groups
To allow our homology groups to detect holes, we’ll consider
quotient groups formed by cycles modulo boundaries. We may
employ intuition from the 2 dimensional setting where a cycle is
just following edges starting and ending at the same point. If the
cycle is a boundary, there is no hole, so we have moduloed it away.
For example, a − b is a boundary of A, but b − c, c − d and b − d
are all cycles that aren’t boundaries.

Figure: Stolen from HatcherRobert Simplicial Homology
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Boundary Homomorphism

Let X be a ∆-complex. We can talk about the boundary of an n
simplex in X , ∆n

α, which is given by traversing the faces of ∆n
α in a

certain order.
Let [v0, v1, v2, v3] be the standard 3-simplex. If we consider its
boundary, it is given by

∂(∆3) = [v̂0, v1, v2, v3]

− [v0, v̂1, v2, v3]

+ [v0, v1, v̂2, v3]

− [v0, v1, v2, v̂3]
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Motivation of boundary homomorphism

So intuitively we captured the boundary of ∆3 in [v0, v1, v2, v3]
with ∂(∆3). In particular, the boundary of a standard 3-simplex
are the 4 faces that bounds it (intuitively). An easier object to
visualize is the standard 2-simplex. We will see this in the next
slide in the presentation.
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Example of boundary homomorphism

Let A be the standard 2-simplex. (Think about A as the area
bounded by the triangle thingy) The boundary of the standard
2-simplex is given by ∂(A) = [v̂0, v1, v2]− [v0, v̂1, v2] + [v0, v1, v̂2].
Notice that −[v0, v̂1, v2] would be going from v2 to v0, because of
the negative sign (the arrow in the drawing is not the correct
direction, because I suck at TikZ).

v0

v1

v2

A

Figure: A standard 2-simplex with faces marked
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Homology groups

Now we can finally define our homology groups. Recall that Cn is
free abelian with basis of the n simplexes of X . Denote ∂n to be a
boundary homomorphism from ∆n into our X .

. . . C2 C1 C0 0∂2 ∂1 0

The n-th homology group is defined by

Hn(X) = Ker ∂n/ Im ∂n+1

For example, intutively, Ker ∂1 captures all the linear combinations
of 1-simplexes such that if you traverse them you start and end at
the same point, the cycles. Im ∂2 captures all the boundaries of
2-simplexes.
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Calculation of H1(S1)

We will now calculate the first homology group of S1
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We first construct S1 like so:

x0a

Figure: S1 as a simplicial complex

It is clear from the figure that S1 has a single 0-cell x0 and a single
1-cell a.
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By observation, we get that C0 = FAb(x0), and that C1 = FAb(a).
It is clear that for i > 1, Ci = 0, the trivial group. So,

. . . C2 C1 C0 0∂2 ∂1 0

Now, ∂1(a) = 0, so Ker ∂1 = C1. And ∂2 = 0, so it must be that
=∂2 = 0. Thus H1(S1) = Ker ∂1/ Im ∂2 = C1 ≈ Z

Remark
It is interesting to note that for a path-connected space X , H1(X)
is the Abelianization of π1(X). See Theorem 2A.1 in [Hat02] for a
proof
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Extra Topics and Appendix

This is the end of the presentation. We do have some extra topics
thoughx

5 First homology group of n-sphere

6 Proof of Brouwer Fixed Point Theorem in higher dimensions
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Calculation of H1(Sn) for n > 1

We can construct Sn as follows. Let x0 be a 0-cell (a point). Now,
attach an n − cell , en by identifying the boundary to x0. That is
declare all the elements in ∂en to be equivalent to x0. Now, notice
that C0 = FAb(x0) still, but C1 = 0 is trivial. So Ker ∂1 = 0 and
thus H1(Sn) = 0
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Brouwer Fixed Point Theorem

We will prove the Brouwer fixed point theorem in n > 2 using
homology.

Theorem
Let f : Dn → Dn be a continuous map. Then, f has a fixed point,
that is there is some y ∈ Dn such that f (y) = y.
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Proof.
Suppose for contradiction f : Dn → Dn is a continuous function
with no fixed point. Define a retraction like we did in the last time.
This retraction induces an injective group homomorphism from
Hn−1(Dn) to Hn−1(Sn−1). However, Hn−1(Dn) is trivial, but
Hn−1(Sn−1) ≈ Z. This contradiction completes the proof.
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Calculation of Hn(Sn) for n > 2

Recall that Sn is made from a 0-cell and an n-cell. Clearly Cn is
free abelian on one generator, Cn−1 is trivial, Cn+1 is also trivial.
So Ker ∂n = Z, Im ∂n+1 = 0, so Hn(Sn) = Z
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