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We have previously constructed the direct product of 2 groups. This enables us to build a bigger group using 2 smaller
groups. However, many groups cannot be realized as a direct product of 2 groups, even the finite groups. If we relax
the conditions on the product, it turns out we can do so.

The main “issue” that occurs with the direct product construction is if we had groups H,K, then both H,K (identified
as subgroups of H ×K) appear as normal subgroups in the direct product. It seems somewhat natural to ask what if
only one of those factors were normal. This is the idea behind semidirect products.

To motivate the construction of semidirect products, we first start by analyzing the case when H is a normal subgroup
of G, and K is a subgroup of G. Recall that we have previously proven if H is a normal subgroup of G, and K is
some subgroup of G, then HK is a subgroup of G. However, each element of HK is not so cleanly represented (see
for example ??). If we require that H ∩K = 0, then we get the additional property that every element of HK can be
written uniquely as a product hk for some h ∈ H, k ∈ K. This means in particular that there is a bijection of sets
HK → H ×K.

At this point, we have collected a few ingredients to define the semidirect product of 2 groups. We have the underlying
set: H ×K, and we would like H to be normal in our newly constructed group. We still need to figure out how the
multiplication in our newly constructed group should work. This can be done by turning back to looking at how
multiplication works in HK. If h1k1, h2k2 ∈ HK, then we wish to write their product (h1k1)(h2k2) in the form hk
for some h ∈ H, k ∈ K. The trick here is to make use of the normality of H by applying conjugation on h2 by k1.
Indeed, we see that

(h1k1)(h2k2) = h1k1h2(k
−1
1 k1)k2

= h1(k1h2k
−1
1 )k1k2

= [h1(k1h2k
−1
1 )][k1k2].

We exploited the normality of H to ensure that k1h2k
−1
1 ∈ H.

This gives us a sense on how to define the multiplication in our new semidirect product: given (h1, k1) and (h2, k2) in
our underlying set, we define their product to be

(h1(k1h2k
−1
1 ), k1k2).

But what on earth is k1h2k
−1
1 ? This doesn’t make sense if H,K are some completely arbitrary groups. This is where

another insight about conjugations come into play - the fact they are automorphisms. For a fixed k, we see that the
map φk : H → H given by h 7→ khk−1 is an automorphism of H, since H is normal in G. Now, if we had some sort
of map from K into the automorphisms of H, we can define what k1h2k

−1
1 meant. Let φ : K → Aut(H) be such a

map. We can then modify our product definition to be

(h1φ(k1)(h2), k1k2),

which we can write in a cleaner way by defining k1 · h2 to mean φ(k1)(h2). We should check probably the most
important quality: associativity. Does it work? Well,

((h1, k1)(h2, k2))(h3, k3) = (h1(k1 · h2), k1k2)(h3, k3) = (h1(k1 · h2)((k1k2) · h3), k1k2k3),

and
(h1, k1)((h2, k2)(h3, k3)) = (h1, k1)(h2(k2 · h3), k2k3) = (h1[k1 · (h2(k2 · h3))], k1k2k3).

So associativity would hold if we had h1(k2 · h2)((k1k2) · h3) = h1[k1 · (h2(k2 · h3))]. This is a bit messy, but not
too bad. We can ignore the h1 term (by applying the inverse of h1 on the left), and expand k1 · (h2(k2 · h3)) to be
(k1 · h2)k1 · (k2 · h3), since φ(k1) is an automorphism. Thus we need

(k1 · h2)(k1 · (k2 · h3)) = (k1 · h2)(k1k2) · h3.

Again, the k1 · h2 term can be ignored, so what we really need is k1 · (k2 · h3) = (k1k2) · h3. This would be true if φ is
a homomorphism.

With that, we can finally give the
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Definition 0.1 (Semidirect product). Let H,K be groups, and let φ : K → Aut(H) be a homomorphism. Then,
the semidirect product of H and K, denoted H ⋊φ K, is the group with underlying set H ×K and product

(h1, k2)(h2, k2) = (h1k1 · h2, k1k2).

We still have yet to check the existence of inverses and identities, but these are not hard, and we leave it to the reader
as
Exercise 0.2. Verify that the construction of semidirect product above is actually a group.

Note that the notationH⋊φK is chosen to remind us thatH is normal in the semidirect product. If the homomorphism
φ is clear we can drop the subscript and just write H ⋊K. Let’s discuss some properties of the construction we just
created.

Proposition 0.3 (Properties of semidirect product). Let H,K be groups, and let φ : K → Aut(K) be a homomor-
phism. Let H ⋊K be the semidirect product of H and K, using φ. Then, the following hold:

(1) The order of H ⋊K is |H||K|.

(2) There are embeddings (injective homomorphisms) of H and K into H ⋊K.

Moreover, if we identify H and K with their isomorphic copies, we have

(3) H is normal in G,

(4) H ∩K = 0,

(5) Conjugation of elements of h by elements of k is defined by k · h, i.e. khk−1 = k · h.

Proof. All of these follow very easily from the construction of the semidirect product, and are left to the reader in
Exercise 0.4.

Exercise 0.4. Prove Proposition 0.3

The following proposition is also often useful in showing that a semidirect product is the same as a direct product

Proposition 0.5. Let H,K be groups, φ a homomorphism of K → Aut(H). Let H ⋊K denote their semidirect
product. Then, the following are equivalent:

1. H ⋊K is isomorphic to the direct product H ×K with the identity map,

2. φ is the trivial homomorphism,

3. K is normal in H ⋊K.

Proof. Exercise; see Exercise 0.6

Exercise 0.6. Prove Proposition 0.5.

Now let’s see some examples of semidirect products.
Example 0.7 (Dihedral groups). Let H be a cyclic group of order n generated by r, and let K be a cyclic group
of order 2, generated by s. Define φ : K → Aut(H) by sending s to the inversion automorphism on H, which is
h 7→ h−1. In the semidirect product, K has order 2 and H has order n. Notice that shs−1 = h−1 for all h ∈ H. If we
recall the presentation of Dn, we see these are precisely the relations that give Dn. Hence this semidirect product is
actually Dn, so we conclude Zn ⋊φ Z2 is isomorphic to Dn. //

If we replace H with an infinite cyclic group, we get the infinite dihedral group. Of course, H can be any abelian
group, since the inversion automorphism is valid provided H is abelian.


