0.1 Extension fields

Given a polynomial, is it possible to find a field in which that polynomial has a root? For example, consider the polynomial $x^2 + 1$.

Definition 0.1. Let F be a field. If $E \supseteq F$ is a field and the operations of E restricted to F are the same as the operations of F , then E is an extension field of F .

If E is an extension field of F, we can say that E is an extension of F, or E extends F. Note the abuse of notation here again: F may not actually be a subset of E, but if it is isomorphic to a subfield of E it is good enough. **Example 0.2.** $\mathbb C$ is clearly an extension field of $\mathbb R$. Additionally, $\mathbb R$ is an extension field of $\mathbb Q$. **Example 0.3.** Let F be a field and let $p \in F[x]$ be irreducible over F. Then, $F[x]/\langle p \rangle$ is an extension field of F. Notice that we can embed F as a subfield of $F/\langle p \rangle$ by the map

 $x \mapsto x + \langle p \rangle$.

It is not too hard to see that this map is an isomorphism onto its image. We will use this example to motivate the following theorem. \mathcal{N}

Theorem 0.4 (Existence of Extension Fields). Let F be a field and let $f \in F[x]$ be a nonconstant polynomial. Then there exists an extension field E of F such that f has a root in E .

Proof. Let $p(x)$ be an irreducible factor of f. This exists as $F[x]$ is a UFD. It suffices to produce an extension field of F where p has a root in. Let $E = F[x]/\langle p \rangle$. Then F embeds into E. Now, we see that $x + \langle p \rangle$ is a root of p in E. Write $p(x) = \sum_{i=0}^{n} a_i x^i$, then

$$
p(x + \langle p \rangle) = \sum_{i=0}^{n} a_i (x + \langle p \rangle)^i = \left(\sum_{i=0}^{n} a_i x^i\right) + \langle p \rangle = \langle p \rangle.
$$

Note that if D is an integral domain and $p \in D[x]$, then there is an extension field of $Q(D)$ that contains a root of p. This means that there is an extension field that contains D . This need not be true if D is not an integral domain. **Example 0.5.** Let $f(x) = 2x + 1$ in $\mathbb{Z}_4[x]$. Then given any ring $R \supseteq \mathbb{Z}_4$, f has no roots in R.

0.2 Splitting Fields

Definition 0.6. Let F be a field, and let E be an extension of F. Then we define $F(a_1, \ldots, a_n)$ to be the smallest subfield of E that contains F and $\{a_1, \ldots, a_n\}$.

It immediately follows that $F(a_1, \ldots, a_n)$ is the intersection of all subfields of E that contain F and $\{a_1, \ldots, a_n\}$. We warn the reader that it is important that we have an extension field to talk about. For example, it is nonsensical to write something like $\mathbb{Q}(\text{apple})$ when we don't have any field that contains apple in it.

Definition 0.7 (Polynomial splitting). Let F be a field and let E be an extension of F. Let $f \in F[x]$. Then f splits in E if it can be factorized into linear factors, i.e. we have $a \in F$, $a_i \in E$ such that

$$
f(x) = a(x - a_1) \cdots (x - a_n).
$$

We say that E is a **splitting field for** f if $E = F(a_1, \ldots, a_n)$.

In other words, E is a splitting field for f it is the smallest field that contains F and all roots of f. We remark that whether a polynomial splits depends on which field the polynomial comes from.

Example 0.8. Let $f(x) = x^2 + 1$ in $\mathbb{Q}[x]$. Then C is not a splitting field of f over \mathbb{Q} , since we can find a smaller field that still contains roots of f, namely, $\mathbb{Q}[x]/\langle f \rangle$.

It would be pretty stupid if splitting fields did not exist. Luckily they do.

2

Theorem 0.9 (Splitting fields exist). Let F be a field and $f \in F[x]$ be nonconstant. Then there is a splitting field of f over F .

The proof of the theorem is simple: induction on deg f and use [Theorem 0.4.](#page-0-0)

Proof. We go by induction^{[1](#page-1-0)} on deg f. If deg f = 1 it is trivial: $f(x) = (x - a)$ for some $a \in F$. Now suppose the theorem is true for all polynomials of degree less than deg f and all fields. By [Theorem 0.4,](#page-0-0) there is an extension field $E \supset F$ such that f has a root in E. Let this root be a_1 . Then we factorize f over E, so write $f(x) = (x - a_1)q(x)$, where $g(x) \in E[x]$. Thus there is a splitting field $K \supseteq E$ of g over E. K has all roots of g, say they are a_2, \ldots, a_n . Since $E \supseteq F$, K contains a_1, F and a_2, \ldots, a_n . So we can take the splitting field to be $F(a_1, \ldots, a_n)$. \Box

Now we can finally give some examples of splitting fields.

Example 0.10. Let $f(x) = x^2 + 1$, but this time considered as an element of $\mathbb{R}[x]$. Then C is a splitting field of f over R. Notice that $\mathbb{R}[x]/\langle f \rangle$ also is a splitting field of f. Are these the same splitting field? We will answer this soon. $\|$

¹Note that strong induction is used here, since deg g may not necessarily be deg f – 1. If I am wrong, please correct me.