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0.1 Introduction to Rings

At this point, we have now studied one kind of algebraic structure - groups. Groups are rather general things, but
their flexibility means that we can say less about them. We now introduce a second kind of algebraic structure – rings.

Consider the integers, Z. Within the integers, we have 2 operations: that of addition, and of multiplication. Adding 2
integers certainly yields another integer, and multiplying two integers also yields another integer. From elementary
school, we also know that given integers a, b, c, we have

a · (b+ c) = a · b+ a · c,

the distributive law. We also have the property that 1 multiplied by any integer simply yields that integer itself.

Motivated by this example, we can now define a

Definition 0.1 (Ring). A ring is a set R equipped with 2 binary operations +, · such that R forms an abelian
group under +, and

1. (Associativity) For all a, b, c ∈ R, we have a · (b · c) = (a · b) · c.

2. (Distributivity) For all a, b, c ∈ R, we have

a · (b+ c) = a · b+ a · c (b+ c) · a = b · a+ c · a.

The former is called left distributivity, and the latter is right distributivity.

3. (Unity) There is an element 1 ∈ R such that for all a ∈ R, 1 · a = a · 1 = a.

Whenever possible, we shall drop the use of · to make it less messy, and simply write a(b+ c) to mean a · (b+ c).
Note that what we have just defined here is a ring with unity. Some authors (e.g. [Gal20]) defines what is generally
called a Rng, a ring without unity.

Given some a ∈ R, if there is an element b such that ab = ba = 1, then a is said to be a unit and we write b = a−1.
The following proposition justifies this notation.

Proposition 0.2 (Uniqueness of units and unity). Let R be a ring. Then, the unity of R is unique, and units are
unique.

Proof. Repeat the proof for groups.

Example 0.3 (The integers). It is not too hard to verify that Z forms a ring. In fact, it is arguably the most
important ring of all. //

The multiplication in a ring need not be commutative at all. If a ring has commutative multiplication, we call it a
commutative ring.
Example 0.4 (Square matrices). Let Mn(F) denote the set of n× n matrices with entries from F. For a concrete
example, let F = R, and let R = Mn(R). Then R forms a ring under usual matrix addition and multiplication. This
ring is also noncommutative when n > 1, which we leave for the reader to verify. //
Example 0.5 (Any field). Any field whatsoever is a ring. Some fields that may come to your mind are Q,R,C. It is
not too hard to check that these are all in fact, rings. We also have the relationship Z ⊂ Q ⊂ R ⊂ C, and they are all
subrings of each other in that way. //

We haven’t defined what a subring is yet, but we shall now. Intuitively, a subring S of a ring R should form a ring
as well, but with the operations of R. That means S has to contain the additive identity of R, the multiplicative
identity of R, and remain closed under addition and multiplication.
Exercise 0.6. Formulate the definition of a subring.

We shall now see some basic properties of rings. These properties will allow us to use the familiar rules from
multiplication and subtraction of integers that we are used to.
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Proposition 0.7 (Basic properties of rings). Let R be a ring, and let a, b, c ∈ R. Then, the following are true:

1. a0 = 0a = 0;

2. a(−b) = (−a)b = −(ab);

3. (−a)(−b) = ab;

4. a(b− c) = ab− ac, (b− c)a = ba− ca;

5. (−1)a = −a;

6. (−1)(−1) = 1.

Proof. We will prove this without making use of the element 1 ∈ R, so that this proposition remains true for rngs.
For the first one, notice that

0 + a0 = a0 = a(0 + 0) = a0 + a0.

Subtract a0 on both sides to obtain the result. The other way is similar.

For 2, we have
a(−b) + ab = a(−b+ b) = a0 = 0.

Adding −(ab) to both sides yields a(−b) = −(ab). Switch the roles of a and b to get the other one.

Exercise 0.8. Complete the proof of Proposition 0.7 without making use of the unity 1, except in rules 5 and 6.

This proposition is useful and not difficult to prove.

Proposition 0.9 (Subring test). Let S ⊆ R be a subset of R. Then S is a subring of R if and only if S contains 1,
and given a, b ∈ S, we have a− b ∈ S and ab ∈ S.

Exercise 0.10. Supply the proof of Proposition 0.9.
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