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Group presentations are a tool for us to describe all the elements of a group. We have already made use of them to
talk about the dihedral group. We shall only give a light overview here; they will be treated more formally later on.

Definition 0.1 (Generator). Let G be a group and let S ⊆ G. Then if every g ∈ G has the property that g can be
written as the finite product of elements of S and their inverses, then S is called a set of generators for G. We
thus say that G is generated by S.

We leave it to the exercises to formalize this notion. For now, an intuitive understanding will suffice. Let us now
discuss notation. If S is a set of generators for G, we shall write G = ⟨S⟩. If S is a finite set, say S = { g1, . . . , gn },
then we shall write G = ⟨g1, . . . , gn⟩ instead.

Definition 0.2 (Relation). Let G be a group and suppose S generates G. Any equation that generators satisfy is
a called a relation.

Example 0.3 (Presentation of Z). The reader has probably already guessed this. Every element of Z is of the form
1 + · · · + 1 where you add 1 to itself n times to obtain n. It thus follows that Z = ⟨1⟩. We also notice that we
can actually write any element as −(−1 + · · ·+−1), adding −1 to itself n times and taking the inverse of it. Thus
Z = ⟨−1⟩ too. It’s not too hard to see that any other element of Z cannot be a generator of Z. //

Our main focus here shall be on the presentation of Dn. Before we can find ourselves a presentation for Dn, we must
first take a look at some of the properties of Dn. Consider a regular n-gon, and let r be a rotation of 360/n degrees
counterclockwise. Let s be reflection across the line between the vertex 1 and the origin. For a helpful visual, see
Figure 1.
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Figure 1: Labelled hexagon

Now, the following details can be easily deduced. We leave the details to the reader in Exercise 0.8.

1. The order of r is n. This says that every rotation is distinct.

2. The order of s is 2. This says that applying the reflection twice leaves the n-gon unchanged.

3. For any i, s ̸= ri. This says that a rotation is never a reflection.

4. Whenever i ̸= j, sri ̸= srj for i, j ∈ { 0, . . . , n− 1 }. As such,

Dn = { e, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1 } .

This means every element of Dn can be written uniquely in the form srk for some k ∈ { 0, . . . , n− 1 }.

5. rjs = sr−j for j ∈ { 0, . . . , n− 1 }. This is better understood by seeing that rs = sr−1. The reader is encouraged
to pull out something that’s square (or rectangular) and try this for themselves.

With these facts, we are now ready to construct a presentation of Dn. From 4, every element of Dn can be written
with r and s, so we would have 2 generators: r, s. At this point, we have no relations yet, but it seems sensible that
we should write down the relations rn = e and s2 = e. For our last relation, we shall write down rjs = srn−j , a
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slight modification of number 5. Our choice for this relation is forced by the fact that the other facts simply say that
something is not equal to something else. We now present1 to the reader, the presentation of Dn.
Example 0.4 (Presentation of Dn). The usual presentation of Dn is given by

Dn = ⟨r, s | rn = s2 = e, srj = r−js⟩.

Intuitively, r is a rotation and s is a reflection. We leave it to the reader to check that this presentation actually gives
us Dn.

Of course, there are other presentations, such as

Dn = ⟨a, b | a2 = b2 = (ab)n = e⟩.

You can think about it as a = s and b = sr where s, r are from the first presentation. //

Group presentations are nice because they’re a compact way to describe a group. Unfortunately, there are some caveats
to group presentations. Due to the flexibility of group presentations, we do not require that the generators come from
some preexisting group. What this means is that we can write down some presentation like ⟨a, b | a4 = b2 = e⟩ and
consider all the strings formed by a and b and their formal inverses2. What this means is that this presentation defines
a group G where the set is all finite strings with letters a, b and letters a−1, b−1, with the property that aa−1, a−1a
and bb−1, b−1b are removed from the string. For example, the string aab−1ba is equal to aaa. The same conventions
apply: if we have aaaa · · · a n times, we would write an instead. Such a construction is called a free group. The
relations then specify what strings are equal in this group. We will return to the concept of free groups in a latter
chapter, but because of this, if we are given an arbitrary presentation, it can be difficult or impossible to distinguish
between distinct elements. In the example with Dn, we worked backwards by deducing facts that the generators must
satisfy and property 4 told us that everything in Dn was able to be uniquely expressed in terms of the generators and
relations, but this may not be true for an arbitrary group presentation. This has some nasty consequences.
Example 0.5 (A group presentation that leads to an infinite group). Consider the presentations

⟨a, b | a2 = b2 = (ab)2 = e⟩ (1)

⟨a, b | a3 = b3 = (ab)3 = e⟩ (2)

What do you think the order of Equation (1) is? 2? 4? It turns out that this is a group of order 4. (Actually this
turns out to be D2. See Exercise 0.10) Now what about Equation (2)? Is it 3? 9? No! It’s an infinite group. As such,
one must not get misled by things like

⟨x, y, z | xn = yk = zm = e, · · ·⟩

and conclude that the group is necessarily finite. //

Another important remark is in order. Given a group presentation, we cannot assume that the relations as written
are the only relations. That is, there may be some hidden relations.
Example 0.6. This is taken from [DF04, Eqn 1.2, p. 26]. Let

Xn = ⟨x, y | xn = y2 = 1, xy = yx2⟩.

Although Xn looks like a group that has order 2n. This is not true. The problematic relationship is xy = yx2. Let’s
now see why this causes problems. First, notice that y has order 2, so that y2 = e. Now we consider the relationship
x = xy2. Now, y2 = yy, so then we have

x = (xy)y = (yx2)y = (yx)(xy) = (yx)(yx2) = y(xy)x2 = y(yx2)(x2) = x4.

So this tells us that x3 = e. So the order of Xn can be at most 6. //
Example 0.7 (A group with an elaborate presentation that degenerates). This example is from [DF04, Eqn 1.3,
p. 27]. Let

Y = ⟨u, v | u4 = v3 = 1, uv = v2u2⟩.

While the first relation may suggest that Y has order 12, Y turns out to actually be the trivial group. A sketch of
this proof is given in Exercise 0.11. //

1lmao
2This is a horrible name and very pedagogically disastrous, I’ll need to change this soon
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Now why does this not happen with the presentation we gave for Dn? The reason is because we crafted a presentation
from properties that the group already satisfies. As such, we have demonstrated that there is a group with generators
r, s that satisfy the relations as given in the standard presentation. This tells us that a group which satisfies the
relations of the standard presentation of Dn would have at least order 2n, since it would contain Dn. It can also be
proven that any group with the presentation as given would have order at most 2n, so necessarily this presentation
gives us the dihedral group.

0.0.1 Problems and Exercises

Exercise 0.8 (Properties of Dn). Prove the following properties about Dn.

1. The order of r is n.

2. The order of s is 2.

3. For any i, s ̸= ri.

4. Whenever i ̸= j, sri ̸= srj for i, j ∈ { 0, . . . , n− 1 }.

5. rjs = sr−j for j ∈ { 0, . . . , n− 1 }. A good strategy is to prove that rs = sr−1 first, then apply induction on j.
Exercise 0.9. Find a presentation of Zn.
Exercise 0.10. Show that the presentation in Equation (1) gives the dihedral group D2, but that the presentation in
Equation (2) is a presentation of an infinite group.
Exercise 0.11. We shall prove that Y as defined in Example 0.7 is the trivial group.

1. Show that v2 = v−1.

2. Prove that v−1u3v = u3. To get started, notice that v−1 = v2, and so v2u3v = (v2u2)(uv). You will need to
make use of part 1 again.

3. Prove that u3 and v commute.

4. Prove that Y is abelian. Note that it suffices to show that u and v commute (why?). Try to prove that u9 = u,
and then apply (2)

5. Prove that uv = e, u = e and v = e. Conclude that Y is the trivial group.
Problem 0.1. Let G be a finitely generated group, and suppose that [G : H] is finite. Prove that H is finitely
generated. (You might need the content from ?? to do this.)

Bonus: Try to find a proof of this fact using algebraic topology
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