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0.1 Classification of finite abelian groups

Of all the groups, the finite abelian groups are relatively nice behaved, because they’re abelian. What is even nicer
behaved are the finite cyclic groups. Since they’re so nicely behaved, it would be nice if we could understand everything
about them. The theorem we present in this chapter will go a long way to dealing with this.

To motivate the theorem, recall that the fundamental theorem of arithmetic tells us that every number can be
factorized uniquely as a product of primes, i.e. n = pk1

1 · · · pkm
m , where the pi’s are distinct primes. It turns out that

we can do something similar for groups. We first state the theorem; the proof is difficult. Before embarking on this
proof, please check out ??.

Theorem 0.1 (Classification of finite abelian groups). Every finite abelian group is a unique product of cyclic
groups of prime power order.

Now let’s see what this means. Let G be a finite abelian group of order n. Then, Theorem 0.1 says that

G ∼= Z
p
k1
1

× · · · × Zpkm
m

.

However, note that the pi’s may not be distinct primes. However, this ”factorization” is unique, meaning that if

G ∼= Z
q
l1
1
× · · · × Zqlnn

,

where qi’s are primes, then n = m, and { p1, . . . , pn } = { q1, . . . , qm }, and if pj = qi then their powers are the same
too.

This theorem is extremely powerful. It is extremely easy to determine all Abelian groups of a certain order. In
contrast, classifying non abelian groups is extremely difficult. We additionally obtain a partial converse to Lagrange’s
theorem as a corollary.

Corollary 0.2 (Subgroups of finite abelian groups). Let G be a finite abelian group and m divide the order of G.
Then G has a subgroup of order m.

Proof. See Exercise 0.8.

We will now prove the theorem. This proof comes from [Gal20, Ch 11]. We first “factorize” the group G using primes.
We will encounter the following lemma but stated more generally; it is essentially Sylow’s First Theorem.
Lemma 0.3 (Sylow’s First Theorem for Abelian groups). Let G be a finite abelian group of order pnm where p
does not divide m. Then, G = H ×K1, where H = {x ∈ G : xpn

= e } and K = {x ∈ G : xm = e }. Additionally,
|H| = pn.

Proof. Obviously H and K are subgroups. Let us show that H ∩K = { e } and HK = G. The fact that H ∩K = { e }
is trivial. By Bezout’s lemma, let s, t be integers such that 1 = sm+ tpn. For any x ∈ G, we have

x = xsm+tpn

= xsmxtpn

.

Then observe that (xsm)p
n

= xsmpn

= e so xsm ∈ H. A similar idea holds to show xtpn ∈ K. This shows G = HK.
To prove the order statement, notice that

pnm = |HK| = |H||K|
|H ∩K|

,

by ??, so that |H||K| = pnm. Now, by Cauchy’s Theorem (for finite abelian groups) (??) and ??, if p divides |K|
then there would be an element of order p in K, call it k. But then km = e and p does not divide m so that is not
possible. Thus p does not divide |K|. So p divides |H|, thus |H| = pn.

We apply the lemma in the following form.

1This is an internal direct product. See ?? for the definition of an internal direct product.
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Corollary 0.4. Suppose G is an abelian group where |G| = pk1
1 · · · pkn

n . Define G(pi) =
{
x ∈ G : xp

ni
i = e

}
.

Then, G = G(p1)× · · · ×G(pn), and |G(pi)| = pki
i .

Proof. Induction.

Next, we show that if an abelian group G has prime power order, we can “factorize” it with one of the factors being
cyclic.
Lemma 0.5. Suppose G is an Abelian group of order pn. Let a ∈ G be an element of maximum order. Then,
G = ⟨a⟩ ×K for some subgroup K of G.

Proof. We induct on n. If n = 1, it is trivial. Assume the lemma is true for all abelian groups of order pk where
k < n. Let a be an element of maximum order, say |a| = pm. This means that xpm

= e for all x ∈ G. Assume m < n,
else it is trivial. Let b be an element of minimum order such that b ̸∈ ⟨a⟩. We claim that ⟨a⟩ ∩ ⟨b⟩ = {e}.

Firstly, bp has order |b|/p. Since b is of minimum order with b ̸∈ ⟨a⟩, we know that bp having a smaller order will

satisfy bp ∈ ⟨a⟩, so let bp = ai. Now, since e = (bp)m = (bp)p
m−1

= (ai)p
m−1

, we know that ai does not generate ⟨a⟩,
so that gcd(i, pm) ̸= 1 (by ??). Thus p divides i, so let i = pj. Then bp = apj . Let us consider the element c = a−jb
(for reasons that will become clear shortly). Note that c ̸∈ ⟨a⟩. Also, cp = a−jpbp = a−ibp = b−pbp = e. This shows c
has order p, and c ̸∈ ⟨a⟩. Since b is an element of minimum order such that b ̸∈ ⟨a⟩, we know b has order p. We have
now shown the claim, since if g ∈ ⟨a⟩ ∩ ⟨b⟩, but g ̸= e, then g generates ⟨b⟩, but then b ∈ ⟨a⟩, a contradiction.

We still need to show ⟨a⟩⟨b⟩ = G. To do so, we study a factor group and use induction. Let G = G/⟨b⟩. Let x denote

the coset x⟨b⟩ ∈ G. It’s not hard to see that |a| = |a|. If not, we have ap
m−1

= e. This shows that ap
m−1 ∈ ⟨b⟩, but

then we would have ⟨a⟩ ∩ ⟨b⟩ having nontrivial intersection, since ap
m−1 ̸= e. As such, a is an element of maximum

order in G. By induction, this tells us that G = ⟨a⟩ ×K where K ≤ G. Letting π : G → G be the homomorphism
defined by π(g) = g⟨b⟩, we see that K := π−1

[
K

]
is a subgroup of G. Now, we claim that ⟨a⟩ ∩ K = {e}. If

x ∈ ⟨a⟩ ∩K, then x ∈ ⟨a⟩ ∩K = {e} = {e⟨b⟩}. In particular we have x = ⟨b⟩, but this means x ∈ ⟨b⟩, and since
x ∈ ⟨a⟩, it must be that x = e. Now consider the order of K, and notice that |G| = |⟨a⟩| · |K|, so it must be that
G = ⟨a⟩K.

The above lemma implies the following:
Lemma 0.6. Let G be an abelian group of prime power order. Then, it is an (internal) direct product of cyclic
groups.

Proof. Use Lemma 0.5 and induction on order of G.

We now need to deal with uniqueness.
Lemma 0.7. Let G be a finite abelian group with order pn. If G = H1 × · · · ×Hm, and G = K1 × · · · ×Hn, where all
Hi,Kj are nontrivial cyclic subgroups such that |H1| ≥ · · · ≥ |Hi| ≥ |Hi+1| ≥ · · · , |K1| ≥ · · · ≥ |Kj | ≥ |Kj+1| ≥ · · · ,
then n = m, and |Hi| = |Ki| for all i.

Proof. We start by induction on order of G.

We end off this chapter with some closing remarks. Firstly, the group ⟨a⟩ in Lemma 0.5 would be a Sylow p-subgroup
of G.

Secondly, this theorem can be derived as a corollary of a more general theorem, the classfiication of finitely generated
abelian groups. This theorem can be derived as a corollary of a even more general theorem, the classification of
finitely generated modules over a principal ideal domain. We will take up these theorems in the future, but for now
these facts are just interesting to note.
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0.1.1 Exercises and Problems

Exercise 0.8 (Subgroups of finite abelian groups). Prove Corollary 0.2. A sketch is given in the next paragraph.

Let G be a finite abelian group of order n. We perform induction on n. When n = 1 or m = 1 it is trivial. Suppose
the theorem is true for all abelian groups of order less than n. Let p be a prime dividing m, so that G has a subgroup
of order p, say K (by Cauchy’s Theorem). Then G/K has order n/p, and by the inductive hypothesis there is some
subgroup of G/K of the form H/K that has order m/p.
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