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0.1 Permutations and cycles

Now that we have looked at a bunch of abelian groups, let us look at some non abelian groups. In particular, we will
be looking at an infinite familiy of non abelian groups, called permutation groups. The importance of permutation
groups cannot be overstated. In a sense, every group is contained within a permutation group. This will be the
content of Cayley’s Theorem.

Definition 0.1 (Permutation). Let S be a set. Then a permutation (of S) is a bijection σ : S → S.

We leave the reader to come with some examples of permutations.
Exercise 0.2. Let S = { 1, 2, 3 }. Find every permutation of S.

We have previously seen in ?? that if S = { 1, . . . , n }, then the set of permutations of S forms a group under function
composition. In fact, given any set A, the set of permutations on S forms a group under function composition.
We denote this set with SA, or Sym(A), to avoid things like SS (which is confusing). This is called the group of
symemtries on the set A. Of course, when n is a positive integer, we also have Sn, the group of symmetries on n
things1.
Exercise 0.3. Let S be any set. Prove that the set of permutations on S forms a group under function composition.

We remark that the structure of the group SA only depends on the cardinality of A, and not on what is in A. That
is, if |A| = |B| then SA is isomorphic to SB. We defer a proof of this to Exercise 0.28. As such when considering
permutations on finite sets of size n, we only need to consider permutations on the set { 1, . . . , n }.

We will focus our efforts on permutations of finite sets for now. Recall that Sn denotes the set of permutations on n
things. Since the main property of an n-element set is that it contains n elements, we shall let Sn refer to the group
of permutations on the set { 1, · · · , n }. To aid in our study of permutation groups, we shall introduce some notation
to describe the elements of permutation groups, called cycle notation. To understand this notation, let us begin with
an example.

Let σ ∈ S6 be defined by σ(1) = 3, σ(2) = 4, σ(3) = 5, σ(4) = 6, σ(5) = 1, σ(6) = 2. So, 1 goes to 3, 3 goes to 5
and 5 goes to 1. We can write this down as (1, 3, 5). Additionally, 2 goes to 4 and 4 goes to 6, and 6 goes to 2. We
similarly write this down as (2, 4, 6). Thus, expressing σ in cycle notation, we get σ = (1, 3, 5)(2, 4, 6).

We remark that given σ ∈ Sn, if n < 10, it is common to omit the commas in the cycle notation as there is no
ambiguity about what is going on. So for instance, our σ above could be written as (135)(246).

Let us see how to evaluate σ at a particular value. Suppoe that we didn’t know what σ(5) was but we do know that
σ = (135)(246). We first apply the cycle (246) to 5. Since 5 appears nowhere in this cycle, it comes out as a 5. Now
we apply the cycle (135) to 5. Since 5 is at the end of the cycle, it goes to 1, so application of (135) to 5 yields 1.

5 5 1
(246) (135)

Now, let τ = (123). We shall now describe how to compose the permutations σ and τ . In this case, the obvious
answer is the correct one, so we have

στ = (135)(246)︸ ︷︷ ︸
σ

(123)︸ ︷︷ ︸
τ

.

As such, we compose cycles right to left. This agrees with how we do function composition. (The reader should be
warned that some authors compose cycles left to right instead. Note that this is stupid.)

However, this form is not very helpful for determining the properties of στ . It is much better if we can express στ in
terms of disjoint cycles.

Definition 0.4 (Disjoint cycles). Let α = (a1, . . . , an) and β = (b1, . . . , bm). Then α and β are said to be disjoint
if ai ̸= bj for all i, j.

1Actually, it turns out that natural numbers are sets, since they are ordinals. So the notation Sn and SA is not abusive. But if you
don’t know about this fact, then it is abusive notation.
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In other words, two cycles are disjoint if they share no elements in common. For example, the cycles (123) and (456)
are disjoint, but the cycles (134) and (235) are not.

So to express στ in terms of disjoint cycles, we simply need to find out where all the elements go. Unfortunately, the
best way to do so is to simply evaluate στ at every element. We shall do one evaluation and leave the rest for the
reader to practice. Let us follow where the element 3 goes.

3 1 1 3
(123) (246) (135)

So σ(3) = 3.
Exercise 0.5. Figure out where the rest of the elements go. Write down στ in cycle notation.

We now finish our discussion of cycle notation by remarking that cycles with only one entry are often omitted. For
example, instead of writing (1)(23)(4)(56), one would write (23)(56) instead. Any missing element is fixed by the
permutation. Of course, we have to write something down for the identity permutation, so we could say that the
identity permutation is (1) or (3) or whatever.

We now begin our investigation into permutations. The following theorem justifies the preceding discussion on
writing permutations as cycles. While reading the proof, the reader should keep in mind the cycle decomposition
algorithm.

Theorem 0.6 (Existence of cycle decomposition). Every permutation of a finite set admits a cycle decomposition.
In other words, if σ ∈ Sn then σ is either a cycle, or a product of disjoint cycles.

Proof. Let S = { 1, . . . , n } let σ be a permutation on S. Pick a1 ∈ S. Set an = σ(an−1), so an = σn−1(a1). This
sequence is finite since all the elements are in S. Thus, there are indices i, j, where i < j and ai = aj . So a1 = σj−i(a1).

Now set α = (a1, . . . , aj−i). If S \ { ak }j−i
1 is empty we are done. If not, pick b1 ∈ S \ { ak }j−i

1 and repeat the
same procedure. Let β be the cycle formed from doing this. We now prove that β and α are disjoint cycles (the
general case follows easily). Suppose not. Say x shows up in both α and β. If x = βk(b1) = αm(a1), then this means
that x = σk(b1) = σm(a1), but then we would have σm−k(a1) = b1, so b1 shows up in the sequence (an). But this
contradicts b1 ∈ S \ (an).

The astute reader may have already noticed the following fact: If α, β are disjoint cycles then the order in which they
are evaluated does not matter.

Theorem 0.7 (Disjoint cycles commute). If α and β are disjoint cycles, then αβ = βα.

Proof. We shall not rob the reader of the joy of discovering the proof of this theorem on their own.

Exercise 0.8. Prove Theorem 0.7.

Disjoint cycles have yet another advantage up their sleeve: we are able to quickly determine their order.

Theorem 0.9 (Order of 2 disjoint cycles is lcm of their length). Suppose α and β are disjoint cycles of length m
and n respectively. Then,

|αβ| = lcm(|α|, |β|).

Proof. Since n,m are the orders of α, β respectively, we let l = lcm(n,m). Then, (αβ)
l
= αlβl = e by Theorem 0.7,

so |αβ| ≤ l. If k ≤ l and k is the order of αβ then we have n and m both dividing k, so k is a common multiple of n
and m. Thus k = l.

Exercise 0.10. Prove that if α is a cycle of length n, then |α| = n.
Exercise 0.11. Generalize Theorem 0.9.

Given a permutation, we would like to write it as a product of 2-cycles. It is always possible to do so.
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Proposition 0.12 (Existence of 2-cycle decomposition). If σ is a permutation on the set { 1, . . . , n } then σ can be
decomposed as the product of 2-cycles.

Proof. Suppose σ is a cycle. Let σ = (a1, . . . , ak). Then direct computation shows that

σ = (a1, ak)(a1, ak−1) · · · (a1a2).

The proof of the general case can be easily obtained by using Theorem 0.6.

Definition 0.13 (Even/Odd Permutation). Let σ be a permutation on a finite set. Then, σ is even if it admits a
2-cycle decomposition into an even number of 2-cycles.

An odd permutation is defined similarly. We call the oddness or evenness of a permutation its parity.

One may be wondering whether a 2-cycle decomposition is unique. Unfortunately, this is not true.
Example 0.14 (Non-uniqueness of 2-cycle decomposition).

(12345) = (54)(53)(52)(51)

(12345) = (54)(52)(21)(25)(23)(13).

A simpler example would be (123) = (13)(12) = (12)(23) = (23)(13). //

Can a permutation be both even or odd? No. In fact, if a permutation can be decomposed as an even number of 2
cycles, then any 2-cycle decomposition of this permutation must also result in an even number of 2 cycles.

Let us first find out the parity of the identity permutation. Since e = (12)(12) it makes sense that it should be even.
It turns out that this is true. Unfortunately, the following proof is very long and painful.

Alternative proofs of the fact that the parity of permutation is well-defined can be found in Exercise 0.33 or
Exercise 0.34.

Proposition 0.15 (Identity permutation is even). Let e be the identity permutation. If e = α1 · · ·αn where αi is a
2-cycle, then n is even.

Proof. Suppose otherwise. Say β1 · · ·βn = e where n is odd. Note that n > 1. Without loss of generality assume
β1 = (ab). Then there is some 2-cycle βi, i > 1, which contains a, otherwise this product will send a to b.

We make a few additional assumptions, which can be done without loss of generality:

1. Assume that i is the smallest such index which contains a;

2. assume that this product is one with the fewest number of a’s as a entry in any cycle.

If i = 2, then β1β2 is (ab)(ab) or (ab)(ac) where c ̸= b. (Note that if it is of the form (ab)(ca) then we have (ca) = (ac)
anyway.) In the first case, (ab)(ab) is the identity, so we now have the identity being a product of an odd number of
2-cycles, with fewer appearances of a’s, contradicting assumption 2. In the latter, we have (ab)(ac) = (ac)(bc). We
may replace β1β2 with β′

1β
′
2 = (ab)(bc) in our product. This contradicts assumption 2 again. Since i = 2 gives us

contradictions, let’s assume i > 2. Now, βi−1 does not contain a, by assumption 1, but it has to contain c. If this is
not true, βi and βi−1 are disjoint. We now see that

Theorem 0.16 (Parity of a permutation is well-defined). If σ is a permutation (on a finite set), then it is either
even or odd.

Proof. Let σ = α1 · · ·αk σ = γ1 · · · γm be 2-cycle decompositions of σ. Then, keeping in mind a 2-cycle is its own
inverse,

e = σσ−1 = (α1 · · ·αk)(γm · · · γ1).

So Proposition 0.15 this implies k +m is even. So k,m are both odd or both even.
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The set of even permutations of a permutation group is extremely important, and so it deserves its own name.
Although we will not see its importance at the moment2, it is worth introducing it at this point.

Definition 0.17 (Alternating group). Let An denote the set of even permutations of Sn.

You probably already suspect that An is a group now.
Exercise 0.18. Prove that An is a subgroup of Sn.

You might be thinking to yourself that there should be as many even permutations as odd permutations. This is
indeed true. If n > 1, then An has order n!/2.
Exercise 0.19. Prove that |An| = n!/2 when n > 1.

Hint: If α is even, then (12)α is odd. Additionally, if α ̸= β then (12)α ̸= (12)β.

0.2 Group actions

We open the discussion about group actions with a motivating example. Let G = { r0, r1, r2, r3 } where r is rotation
clockwise by 90 degrees. Consider the diagram of the square, and follow where the dot goes.

Figure 1: Helpful square to visualize rotation group acting on square.

In some sense, the group of rotations is acting on the square, changing its position. We can perhaps envision a rotation
as some kind of function on the square. Let S represent the square. Imagine labelling each of the edges of the square
by 1,2,3,4. So we can think of rotating the square by 90 degrees as r(S), whatever that means. Now, if we do r(r(S)),
that is rotating by 180 degrees. But if we do r2(S), it is also rotating by 180 degrees. In the former, we apply the
rotation action and then the rotation action, but in the latter, we multiply r with itself in the group G and then
apply the action of the result on S. Naturally, it should make sense that these notions agree. Now, let’s take a look
at how the identity rotation acts on the square. Notice that the rotation by 0 degrees fixes every edge of the square.

As another example, let us consider a tuple (1,2,3). We can rearrange the components in the tuple, to be something
like (2,1,3) or like (3,2,1). Now, we know that the act of rearranging something is simply a permutation. In this
example, if σ is the permutation that sends 1 to 2, 2 to 1 and 3 to itself, then (σ(1), σ(2), σ(3)) = (2, 1, 3). It’s not
too hard to figure out how to extend this idea to any other σ ∈ S3.

Definition 0.20 (Group action). Let G be a group and S a set. Then a action of G on S is a function
f : G× S → S such that:

1. (Associativity) For all g, h ∈ G and s ∈ S, f(gh, s) = f(g, f(h, s)).

2. (Identity) For all s ∈ S, f(e, s) = s.

As you can see above, writing f(g, s) gets annoying very fast. Thus, whenever the group action is clear, we shall use
g · s, to mean f(g, s). When there is no danger of confusing the group action with group multiplication, we shall
write gs instead.

We shall now see some examples of group actions.
Example 0.21 (Symmetric group). Let S = { 1, . . . , n } and let G = Sn. Then we can define an action of G on S by
declaring σ · s := σ(s). //
Example 0.22. Let S = R be the real numbers, and let G = Z. We can define an action of G on S by declaring
n · r = n+ r. //

2The alternating group has no nontrivial proper normal subgroups. You might have seen this called a simple group. There is a rather
famous theorem that classifies all the finite simple groups. The alternating groups form an infinite family of finite simple groups.
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Example 0.23 (Group acting on itself). Let G be a group. Now, if we momentarily forget that G is a group, G is also
a set. Thus, we can define a very natural group action on G by g · h := gh. So G acts on G by left multiplication. //

Definition 0.24 (Orbit). Let G act on S. For s ∈ S, we define the orbit of s to be

OrbG(s) = { g · s : g ∈ G } .

So the orbit is the image of G under the function g 7→ f(g, s).

Definition 0.25 (Stabilizer). Let G act on S. For s ∈ S, we define the stabilizer of s to be

StabG(s) = { g ∈ G : g · s = s } .

So the stabilizer of s is the set of all g ∈ G that fixes s under the group action. Of course, a natural question is
whether the stabilizer is a subgroup. The following exercise answers that question.
Exercise 0.26. Prove that the stabilizer of s is a subgroup.

A burning question at this point might be the following: Aren’t group actions kind of just like permutations? Indeed,
this is an excellent question, as we have put in the chapter on permutation groups. Suppose G acts on X. Let us fix
a g ∈ G. Consider the function f : X → X given by x 7→ g · x. It turns out that f is a bijection, and thus f is a
permutation of X. Now, let us call σg the function that applies the action of g on X, i.e. σg(x) = g · x. It seems that
we can construct a map from G into SX . Of course, this map would be g 7→ σg. Since we are studying group theory,
it is natural to wonder whether this is a homomorphism. Indeed, it is. See Exercise 0.35.

Our study of permutation groups takes a temporary hiatus with the following theorem. If it seems trivial to you, it’s
due to the power of excellent definitions. This shows us the power of group actions and once again reminds us the
importance of constructing good definitions.

Theorem 0.27 (Cayley’s Theorem). Every group is isomorphic to a group of permutations.

Proof. See Exercise 0.36.

0.3 Problems

Exercise 0.28 (Structure of permutation group). Recall that the cardinality of a set A is equal to the cardinality of
a set B if there exists a bijection from A to B. Let A,B be sets and suppose that the cardinality of A equals to the
cardinality of B. Thus we may let γ : A → B be a bijection. Show that SA is isomorphic to SB .

Hint: Think about how a permutation of A can be changed into a permutation of B, and conversely.
Exercise 0.29. Suppose H is a subgroup of Sn and H has odd order. Prove that H is a subgroup of An.
Exercise 0.30. Prove that if σ is a permutation with odd order, then σ is even.
Exercise 0.31. Show that if n ≥ 3, then Z(Sn) is trivial.
Exercise 0.32. Let α ∈ Sn. Without using Lagrange’s theorem, prove that the order of α divides Sn.
Exercise 0.33 (An alternative proof that the sign of a permutation is well-defined). We give an alternative proof
that the sign of a permutation is well-defined, due to [Jac09, p. 50].

Recall that an n-cycle can be decomposed into n− 1 transpositions. If γ is an n-cycle, let Ñ(γ) = n− 1, the number
of transpositions that γ is a product of. Given some α ∈ Sn, let

α = γ1 · · · γn,

be the disjoint cycle decomposition of α. Now we can define N(α) =
∑n

i=1 Ñ(γi).

More concretely, if γi is a ui cycle, then N(α) =
∑n

i=1 ui − 1. Also note that N(e) = 0.

(a) Show that N(α) is uniquely determined by α.

(b) Let a, b, c1, . . . , ch, d1, . . . , dk be distinct elements, where h, k ≥ 0. Verify that

(ab)(ac1 · · · chbd1 · · · dk) = (bd1 · · · dk)(ac1 · · · ch).
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(c) Let p = (ac1 · · · chbd1 · · · dk). Check that N(p) = h+ k + 1, and that N((ab)p) = h+ k.

(d) Let α be some permutation. Show that N((ab)α) = N(α)−1 if a, b occur in the same cycle in the decomposition
of α into disjoint cycles, and N((ab)α) = N(α) + 1 if a, b occur in different cycles.

(e) Suppose that α is a product of m transpositions. Prove that N(α) =
∑m

i=1 εi, where εi = ±1. Hint: Decompose
α into disjoint cycles first to make life easy.

(f) Prove that N(α) and m have the same parity, i.e. N(α) is even if and only if m is even.
Exercise 0.34 (Another proof that the sign of a permutation is well-defined). Let T be the set of all polynomials
in x1, . . . , xn. For σ ∈ Sn, define a group action on T by σ · xi = xσ(i) and extending this in a natural way, so for
instance, we have σ · (4xi + 3xixj) = 4xσ(i) + 3xσ(i)xσ(j). Let ∆ =

∏
i>j(xi − xj), where i, j runs from 1 to n.

1. Prove that the group action defined is actually a group action.

2. Show that if τ is a transposition, τ ·∆ = −∆.

3. Prove that if σ can be decomposed into an even number of transpositions, then any decomposition of σ into
transpositions yields an even number of permutations.

Exercise 0.35 (Group actions and the symmetric group). Let G act on X. For a fixed g ∈ G, define σg(x) = g · x.

1. For every g ∈ G, show that σg is a bijection.

2. Show that the map g 7→ σg is a homomorphism. (i.e. σgσh = σgh)
Exercise 0.36 (Cayley’s Theorem). Prove Cayley’s Theorem.
Exercise 0.37 (Orbits partition a set). Let G be a group acting on a set S. Define ∼ on S by

x ∼ y ⇐⇒ x ∈ orbG(y).

Show that ∼ is an equivalence relation, and that the equivalence class of x under ∼, [x]∼ is precisely orbG(x).
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