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0.1 Cyclic groups

Groups are very general things, and thus we don’t have much control over them. However, there are some groups
which are much easier to understand and gain control over. These are the cyclic groups. Cyclic groups are very nice
because any element in the cyclic group must be of a certain form. We thus open with the motivating example of the
integers.
Example 0.1 (The integers). Let G = Z. Consider any integer n ∈ Z. Since n = 1 + · · ·+ 1, n times, we can write
n = n · 1. Every integer is of this form, a multiple of 1. Thus, Z = {n · 1 : n ∈ Z }. Alternatively, we could say that
n = −n · −1, and so Z = {n · −1 : n ∈ Z }. //

It seems that 1 and −1 generate the entire group of integers (under addition), and indeed this is true.

Definition 0.2 (Cyclic group). Let G be a group. Then G is cyclic if there is a g ∈ G such that G = { gn : n ∈ Z }.
Such an element g is called a generator of G.

If G is cyclic and g is a generator of G, we denote this situation with G = ⟨g⟩.
Example 0.3 (Cyclic subgroups). Let G be a group and g ∈ G. Then, ⟨g⟩ is a subgroup of G. //
Exercise 0.4. Prove that ⟨g⟩ is a subgroup of G.
Example 0.5 (Integers modulo n). Let G = Zn. Notice that this is again a cyclic group under addition modulo n.
Of course, 1 remains a generator for G. However, unlike Z, which only has 2 generators, Zn could have more than
one. We will see this in the next example. //
Example 0.6. Let G = Z6. Then G = ⟨1⟩ = ⟨5⟩. However, 2 is not a generator of G as ⟨2⟩ = { 0, 2, 4 } which is not
all of Z6. //
Example 0.7 (Non-example of a cyclic group). Let G = U(8). Then, G is not cyclic, as ⟨1⟩ = { 1 }, ⟨3⟩ = { 1, 3 },
⟨5⟩ = { 1, 5 } and ⟨7⟩ = { 1, 7 }. //

Taking G = Z6, we notice that 4 · 2 = 1 · 2. In general, we would like to be able to tell when ai and aj are the same
element (and when they are not). The next theorem gives necessary and sufficient conditions to be able to determine
this.

Theorem 0.8. Let G be a group and a ∈ G. If a has infinite order then ai = aj if and only if i = j. If a has
order n then ⟨a⟩ = { e, a, a2, . . . , an−1 } and ai = aj if and only if n divides i− j.

Before starting the proof, a remark about what the statement ⟨a⟩ = { e, a, a2, . . . , an−1 } means. We are essentially
saying that if a has order n, then the cyclic group generated by a has n distinct elements in it and it is precisely the
set as written.

Proof. Suppose a has infinite order. Then an = e if and only if n = 0. Since ai = aj if and only if ai−j = e, i− j = 0.
Suppose a has order n. It is clear that { e, a, a2, . . . , an−1 } ⊆ ⟨a⟩. Now let ak ∈ ⟨a⟩. Then using the division algorithm
on k and n, ak = aqn+r = aqnar = ar. Keeping in mind that 0 ≤ r < n, ak ∈ { e, a, a2, . . . , an−1 }. Now suppose
ai = aj , so ai−j = e. Apply the division algorithm on i− j to see that e = ai−j = aqn+r = ar. Since n is the least
positive integer for which an = e and r < n, r = 0. The converse direction is similar.

In ??, we used the absolute value operation to refer to both the order of an element and the order of a group. We
promised that we will justify that abuse of notation here. Let us now make good on our promise. Notice that as a
consequence of this theorem we have |a| = |⟨a⟩|. Thus, the order of an element a is precisely the order of the cyclic
(sub)group that it generates.

Another consequence of this theorem is the following corollary.

Corollary 0.9. ak = e if and only if |a| divides k.

Corollary 0.10. If G is a finite group and a, b ∈ G where ab = ba, then |ab| divides |a||b|.

In general, however, there is no relationship between |ab| and |a|, |b|. The next exercise shows this.

Exercise 0.11. Let A =

[
0 −1
1 0

]
and B =

[
0 1
−1 −1

]
be from SL2(R). Compute |A|, |B| and |AB|.
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Given cyclic subgroups ⟨ai⟩ and ⟨aj⟩, how do we determine whether they are the same? Given an element a and
its order, can we determine

∣∣ak∣∣ for any k? The answers to all these questions is yes, and the following theorem
illustrates this.

Theorem 0.12. Let a ∈ G and |a| = n. Let k > 0. Let d = gcd(n, k). Then, we have

• ⟨ak⟩ = ⟨ad⟩,

•
∣∣ak∣∣ = n/d.

Proof. Let k = dr, so ak = adr which shows ⟨ak⟩ ⊆ ⟨ad⟩. Now write d = ns+ kt (c.f. ??), then

ad = ansakt = akt.

So ad ∈ ⟨ak⟩. Let’s prove the second part. Firstly, (ad)n/d = e so
∣∣ad∣∣ ≤ n/d. If i < n/d, then (ad)i ̸= e so this

establishes
∣∣ad∣∣ = n/d. The desired conclusion follows from the first part.

The next corollary of this theorem tells us that in a finite cyclic group, the order of an element divides the order of
the group.

Corollary 0.13 (Order of an element divides order of the group). If G is a finite cyclic group and a ∈ G, then |a|
divides |G|.

It thus follows that the order of a cyclic subgroup of a finite cyclic group divides the order of the group. In a later
chapter, we shall soon this is true in general for any finite group.

This corollary gives us a criterion for the equivalence of cyclic subgroups.

Corollary 0.14 (Criterion for equivalence of cyclic subgroups). Suppose a ∈ G has order n. Then, ⟨ai⟩ = ⟨aj⟩ if
and only if gcd(n, i) = gcd(n, j).

Exercise 0.15. Prove this corollary.

We now have the tools to find all the generators of a finite cyclic group.

Corollary 0.16 (Criteria for being a generator). Let G = ⟨a⟩ be a cyclic group of order n. Let b be an element of
order m. Then, b generates G if and only if gcd(m,n) = 1.

Since Zn is always cyclic, we can always easily determine the generators of Zn.

A burning question in the reader’s mind is on the kind and number of subgroups a group may contain. For example,
we may be wondering if every subgroup of a cyclic group is cyclic. Intuitively, this should feel true.

Theorem 0.17. Every subgroup of a cyclic group is cyclic.

Proof. Let G = ⟨a⟩ and H ⊆ G be a subgroup. Suppose H is not the trivial subgroup, for else it is trivially cyclic.
Then there is some t > 0 such that at ∈ H. We now attempt to find a generator for H. Let m be the least positive
integer such that am ∈ H. Obviously ⟨am⟩ ⊆ H. Now let ak ∈ H. Then write ak = aqm+r. Since m is the least,
r = 0. Thus ak ∈ ⟨am⟩ and so ⟨am⟩ ⊇ H.

We remark that we make use of the well ordering principle here, so make sure you have spotted it!

This theorem tells us exactly what the subgroups of a cyclic group are, and how to find them. We will invoke
Theorem 0.12 many times in the proof, so keep that in mind. Additionally, if d divides n, we note that gcd(d, n) =
d.
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Theorem 0.18 (Fundamental Theorem of Cyclic Groups). Let G = ⟨a⟩ be a finite cyclic group of order n. Then, if
d divides n, there is exactly one subgroup of order d. Moreover, these are the only subgroups of G.

Proof. Suppose d divides n. It is clear that ⟨an/d⟩ is a subgroup of order d. Let H = ⟨ak⟩ be a subgroup of order d,
we shall show H = ⟨an/d⟩. Since ⟨ak⟩ = ⟨aj⟩ where j = gcd(n, k) and ⟨aj⟩ has order n/j = d it follows that n/d = j
so ⟨ak⟩ = ⟨an/d⟩. The final claim follows from Theorem 0.17 and Corollary 0.13.

With this theorem, it is now very easy to find all the subgroups of Zn.
Exercise 0.19. Formulate a corollary that classifies the subgroups of Zn.

Since cyclic groups are so nice, they should behave nicely under homomorphisms and isomorphisms as well.

Proposition 0.20 (Properties of cyclic groups under homomorphisms). Let ϕ : G → H be a group homomorphism,
and G be a cyclic group. Then, the following are true.

1. If G = ⟨g⟩, then ϕ[G] = ⟨ϕ(g)⟩. In other words, ϕ takes generators to generators.

Proof. If ϕ(x) ∈ ϕ[G], then there is some integer n such that x = gn. Thus, we have ϕ(x) = ϕ(gn) = ϕ(g)n.

Proposition 0.21 (Properties of cyclic groups under isomorphisms). Let ϕ : G → H be a group isomorphism, and
let G be a cyclic group. Then, the following are true.

1. H is cyclic.

Proof. (1) follows from Proposition 0.20(1)

Thus, if G is a cyclic group of order n, it is isomorphic to Zn.
Exercise 0.22. Show that any cyclic group of order n is isomorphic to Zn.

We can thus say that there is only one cyclic group of order n up to isomorphism, which means precisely that any
cyclic group of order n is isomorphic to any other cyclic group of order n. This means that any question about finite
cyclic groups can be answered by studying Zn instead.

0.1.1 Exercises and Problems

Exercise 0.23 (Criterion for element to be identity). Prove that if ak = e, then k divides |a|.
Exercise 0.24. Show that if G has order 3, then it must be cyclic.
Exercise 0.25. Show that if a ∈ G, then ⟨a⟩ is a subgroup of C(a).
Exercise 0.26. Let G be a group and a ∈ G. Show that ⟨a⟩ = ⟨a−1⟩.
Exercise 0.27. Let G = Z and let m,n ∈ Z. Consider ⟨m⟩ and ⟨n⟩ as subgroups of G. Find a generator of ⟨m⟩ ∩ ⟨n⟩.
Exercise 0.28. Show that Q under multiplication is not cyclic.
Exercise 0.29. Let G be a cyclic group of order 15 and let x ∈ G. Suppose that exactly two of x3, x5 and x9 are
equal. Determine

∣∣x13
∣∣.

Exercise 0.30. Prove that an infinite group has infinitely many subgroups. Warning: Do not assume that an infinite
group must have an element of infinite order.
Exercise 0.31. Let n be an natural number. Find a group that has exactly n subgroups.
Problem 0.1. Let G be a group with more than one element, and suppose that G has no proper nontrivial subgroups.
Show that G is a finite group and |G| is prime.
Problem 0.2. Let G be a finite group. Prove that G is the union of proper subgroups if and only if G is not cyclic.

Given a cyclic group, a question is to determine how many generators it has. We already have Corollary 0.16, which
gives us necessary and sufficient conditions for an element to be a generator. At this point, the reader should recall
the definition of U(n). It appears that every element of U(n) is a generator of Zn, and these are the only generators.
Is this true?
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Proposition 0.32 (Number of generators). Let G be a cyclic group of order n. Then, G has exactly |U(n)|
generators.

Proof. Let g ∈ G and m = |g|. Notice that g generates G if and only if gcd(m,n) = 1, which is true if and only if
m ∈ U(n).

0.2 Euler totient function

We have spent a large amount of time working with Zn. This feels very number theoretic, and the reader may very
well be wondering1 about the connection between group theory and number theory. We shall scratch the surface of
this connection by using group theory to prove some facts about a common function used in number theory, the Euler
totient function.
Warning. Do not think about skipping this section. There are important theorems in here.

Definition 0.33 (Euler totient function). We define the Euler totient function φ(n) to be the number of natural
numbers less than or equal to n that are coprime to n.

It is immediate, by definition, that φ(n) = |U(n)|.

Those who have had number theory may be familiar with the following proposition. You might also recall how much
of a pain these are to prove with number theory. Are we going to subject you to the same pain as you have previously
experienced? No. We are going to show how we can use group theory to deal with these facts.

Proposition 0.34. Let φ denote the Euler totient function. Then,

1. If a is coprime to b, φ(ab) = φ(a)φ(b)

2. Let p be a prime. Then, φ(pn) = pn − pn−1.

Proof. (1) will follow from the more general statement that U(ab) ∼= U(a) × U(b). (2) will follow from the more
general statement that U(pn) ∼= Zpn−pn−1 for an odd prime, and U(2n) ∼= Z2 × Z2n−2 when p = 2. Thus we shall
prove the more general statements instead.

A common theme in algebra is trying to break down larger structures into smaller, more understandable structures.
We began with number theory, by factorizing numbers into primes and studying the primes to gain control over all
numbers. In group theory, we can try to understand a group in terms of its subgroups. We shall now prove a theorem
that lets us ”factorize” U(n).

Theorem 0.35 (Structure of U(n)). Let a, b be coprime. Then, U(ab) ∼= U(a)× U(b).

Proof. Notice that the mapping n 7→ (nmod a, nmod b) is an isomorphism from U(ab) to U(a)× U(b).

The reader should find that the choice of the isomorphism very natural. This choice is natural in part because we
didn’t really have any other good options to choose.
Exercise 0.36. Check that the mapping which is claimed to be isomorphisms are indeed isomorphisms.

0.2.1 Problems and Exercises

Exercise 0.37 (Automorphisms on finite cyclic groups). Prove that Aut(Zn) is isomorphic to U(n). Hint: Consider
the mapping φ 7→ φ(1). Here, φ is an automorphism on Zn.

1If you’re not wondering about it, you might try to skip this section. Heed the warning, and do not skip it.
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0.3 Group presentations and generators

Group presentations are a tool for us to describe all the elements of a group. We have already made use of them to
talk about the dihedral group. We shall only give a light overview here; they will be treated more formally later on.

Definition 0.38 (Generator). Let G be a group and let S ⊆ G. Then if every g ∈ G has the property that g can
be written as the finite product of elements of S and their inverses, then S is called a set of generators for G.
We thus say that G is generated by S.

We leave it to the exercises to formalize this notion. For now, an intuitive understanding will suffice. Let us now
discuss notation. If S is a set of generators for G, we shall write G = ⟨S⟩. If S is a finite set, say S = { g1, . . . , gn },
then we shall write G = ⟨g1, . . . , gn⟩ instead.

Definition 0.39 (Relation). Let G be a group and suppose S generates G. Any equation that generators satisfy
is a called a relation.

Example 0.40 (Presentation of Z). The reader has probably already guessed this. Every element of Z is of the
form 1 + · · ·+ 1 where you add 1 to itself n times to obtain n. It thus follows that Z = ⟨1⟩. We also notice that we
can actually write any element as −(−1 + · · ·+−1), adding −1 to itself n times and taking the inverse of it. Thus
Z = ⟨−1⟩ too. It’s not too hard to see that any other element of Z cannot be a generator of Z. //

Our main focus here shall be on the presentation of Dn. Before we can find ourselves a presentation for Dn, we must
first take a look at some of the properties of Dn. Consider a regular n-gon, and let r be a rotation of 360/n degrees
counterclockwise. Let s be reflection across the line between the vertex 1 and the origin. For a helpful visual, see
Figure 1.
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Figure 1: Labelled hexagon

Now, the following details can be easily deduced. We leave the details to the reader in Exercise 0.45.

1. The order of r is n. This says that every rotation is distinct.

2. The order of s is 2. This says that applying the reflection twice leaves the n-gon unchanged.

3. For any i, s ̸= ri. This says that a rotation is never a reflection.

4. Whenever i ̸= j, sri ̸= srj for i, j ∈ { 0, . . . , n− 1 }. As such,

Dn = { e, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1 } .

This means every element of Dn can be written uniquely in the form srk for some k ∈ { 0, . . . , n− 1 }.

5. rjs = sr−j for j ∈ { 0, . . . , n− 1 }. This is better understood by seeing that rs = sr−1. The reader is encouraged
to pull out something that’s square (or rectangular) and try this for themselves.

With these facts, we are now ready to construct a presentation of Dn. From 4, every element of Dn can be written
with r and s, so we would have 2 generators: r, s. At this point, we have no relations yet, but it seems sensible that
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we should write down the relations rn = e and s2 = e. For our last relation, we shall write down rjs = srn−j , a
slight modification of number 5. Our choice for this relation is forced by the fact that the other facts simply say that
something is not equal to something else. We now present2 to the reader, the presentation of Dn.
Example 0.41 (Presentation of Dn). The usual presentation of Dn is given by

Dn = ⟨r, s | rn = s2 = e, srj = r−js⟩.

Intuitively, r is a rotation and s is a reflection. We leave it to the reader to check that this presentation actually gives
us Dn.

Of course, there are other presentations, such as

Dn = ⟨a, b | a2 = b2 = (ab)n = e⟩.

You can think about it as a = s and b = sr where s, r are from the first presentation. //

Group presentations are nice because they’re a compact way to describe a group. Unfortunately, there are some caveats
to group presentations. Due to the flexibility of group presentations, we do not require that the generators come from
some preexisting group. What this means is that we can write down some presentation like ⟨a, b | a4 = b2 = e⟩ and
consider all the strings formed by a and b and their formal inverses3. What this means is that this presentation defines
a group G where the set is all finite strings with letters a, b and letters a−1, b−1, with the property that aa−1, a−1a
and bb−1, b−1b are removed from the string. For example, the string aab−1ba is equal to aaa. The same conventions
apply: if we have aaaa · · · a n times, we would write an instead. Such a construction is called a free group. The
relations then specify what strings are equal in this group. We will return to the concept of free groups in a latter
chapter, but because of this, if we are given an arbitrary presentation, it can be difficult or impossible to distinguish
between distinct elements. In the example with Dn, we worked backwards by deducing facts that the generators must
satisfy and property 4 told us that everything in Dn was able to be uniquely expressed in terms of the generators and
relations, but this may not be true for an arbitrary group presentation. This has some nasty consequences.
Example 0.42 (A group presentation that leads to an infinite group). Consider the presentations

⟨a, b | a2 = b2 = (ab)2 = e⟩ (1)

⟨a, b | a3 = b3 = (ab)3 = e⟩ (2)

What do you think the order of Equation (1) is? 2? 4? It turns out that this is a group of order 4. (Actually this
turns out to be D2. See Exercise 0.47) Now what about Equation (2)? Is it 3? 9? No! It’s an infinite group. As such,
one must not get misled by things like

⟨x, y, z | xn = yk = zm = e, · · ·⟩

and conclude that the group is necessarily finite. //

Another important remark is in order. Given a group presentation, we cannot assume that the relations as written
are the only relations. That is, there may be some hidden relations.
Example 0.43. This is taken from [DF04, Eqn 1.2, p. 26]. Let

Xn = ⟨x, y | xn = y2 = 1, xy = yx2⟩.

Although Xn looks like a group that has order 2n. This is not true. The problematic relationship is xy = yx2. Let’s
now see why this causes problems. First, notice that y has order 2, so that y2 = e. Now we consider the relationship
x = xy2. Now, y2 = yy, so then we have

x = (xy)y = (yx2)y = (yx)(xy) = (yx)(yx2) = y(xy)x2 = y(yx2)(x2) = x4.

So this tells us that x3 = e. So the order of Xn can be at most 6. //
Example 0.44 (A group with an elaborate presentation that degenerates). This example is from [DF04, Eqn 1.3,
p. 27]. Let

Y = ⟨u, v | u4 = v3 = 1, uv = v2u2⟩.

While the first relation may suggest that Y has order 12, Y turns out to actually be the trivial group. A sketch of
this proof is given in Exercise 0.48. //

2lmao
3This is a horrible name and very pedagogically disastrous, I’ll need to change this soon
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Now why does this not happen with the presentation we gave for Dn? The reason is because we crafted a presentation
from properties that the group already satisfies. As such, we have demonstrated that there is a group with generators
r, s that satisfy the relations as given in the standard presentation. This tells us that a group which satisfies the
relations of the standard presentation of Dn would have at least order 2n, since it would contain Dn. It can also be
proven that any group with the presentation as given would have order at most 2n, so necessarily this presentation
gives us the dihedral group.

0.3.1 Problems and Exercises

Exercise 0.45 (Properties of Dn). Prove the following properties about Dn.

1. The order of r is n.

2. The order of s is 2.

3. For any i, s ̸= ri.

4. Whenever i ̸= j, sri ̸= srj for i, j ∈ { 0, . . . , n− 1 }.

5. rjs = sr−j for j ∈ { 0, . . . , n− 1 }. A good strategy is to prove that rs = sr−1 first, then apply induction on j.
Exercise 0.46. Find a presentation of Zn.
Exercise 0.47. Show that the presentation in Equation (1) gives the dihedral group D2, but that the presentation in
Equation (2) is a presentation of an infinite group.
Exercise 0.48. We shall prove that Y as defined in Example 0.44 is the trivial group.

1. Show that v2 = v−1.

2. Prove that v−1u3v = u3. To get started, notice that v−1 = v2, and so v2u3v = (v2u2)(uv). You will need to
make use of part 1 again.

3. Prove that u3 and v commute.

4. Prove that Y is abelian. Note that it suffices to show that u and v commute (why?). Try to prove that u9 = u,
and then apply (2)

5. Prove that uv = e, u = e and v = e. Conclude that Y is the trivial group.
Problem 0.3. Let G be a finitely generated group, and suppose that [G : H] is finite. Prove that H is finitely
generated. (You might need the content from ?? to do this.)

Bonus: Try to find a proof of this fact using algebraic topology
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