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One may say that algebra is the study of relations. At a higher level, we can even ask how are 2 groups related to
each other.

In mathematics, the theme of a structure preserving transformation is common. You may have seen continuous and
differentiable functions in middle school. These functions preserve certain properties of the real numbers. If you’ve
had linear algebra, you might have seen linear transformations. Linear transformations preserve certain properties of
vector spaces. We shall now introduce the notion of a group homomorphism, which preserves certain properties of
groups.

Definition 0.1 (Group Homomorphism). Let G,H be groups. Then a (group) homomorphism is a function
ϕ : G → H such that for all x, y ∈ G,

ϕ(xy) = ϕ(x)ϕ(y).

A (group) isomorphism is a group homomorphism that is bijective.

So a homomorphism is a function that preserves group operations. You can call this an operation-preserving map.
Additionally, we shall say that G and H are isomorphic, or G is isomorphic to H if there is an isomorphism ϕ : G → H.

Definition 0.2 (Group Automorphism). Let G be a group. A (group) automorphism is an isomorphism
f : G → G.

So a group automorphism is a group isomorphism where the domain and the codomain are the same.

Before we continue, the reader should really appreciate how simple this definition is. With just the simple equation
ϕ(xy) = ϕ(x)ϕ(y), we can capture all the algebraic properties we care about. As algebraists, we often talk about two
groups being the ”same”. While they may not be equal as sets, if they are isomorphic, then every algebraic property
you could care about is preserved.
Example 0.3 (Linear maps). Let V,W be vector spaces and T : V → W be linear. Then T is a group homomorphism,
when considering V,W as groups (under vector addition). If T is an isomorphism of vector spaces, then it is also
necessarily a isomorphism of groups. //
Example 0.4 (Exponential). Let G = R under addition, and H = R+, the positive reals, under multiplication.
Define ϕ : G → H by ϕ(x) = ex, the exponential function. Then, ϕ(x+ y) = ϕ(x)ϕ(y) by properties of exponentials.
In fact, this is an isomorphism. //
Exercise 0.5. Prove that ϕ as defined above is an isomorphism.

We shall immediately prove some useful properties of homomorphisms.

Theorem 0.6 (Properties of homomorphisms). Let G,H be groups and ϕ : G → H be a group homomorphism.
Then, the following are true.

1. ϕ(e) = e. That is, homomorphisms take the group identity to the identity.

2. ϕ(xn) = ϕ(x)n, for all n ∈ Z.

3. If K is a subgroup of G, then ϕ[K] is a subgroup of H. Thus, the image of a subgroup is a subgroup.

4. If J is a subgroup of H, then ϕ−1[J ] is a subgroup of G. Thus, the preimage of a subgroup is a subgroup.

5. If K is a subgroup of G and K is Abelian, ϕ[K] is Abelian.

Proof. For property 1,

eϕ(e) = ϕ(e) = ϕ(ee) = ϕ(e)ϕ(e).

The result follows by right-cancellation.

Properties 2-5 are exercises.

Exercise 0.7. Prove property (2) of Theorem 0.6. Hint: First show it for nonnegative n, then show that ϕ(g−1) =
ϕ(g)−1.
Exercise 0.8. Prove the rest of Theorem 0.6
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Exercise 0.9. Let G be a group. The set of automorphisms on a group G is denoted Aut(G), and this is called the
group of automorphisms on G.

For g ∈ G, define φg : G → G to be the function φg(x) = gxg−1. Let Inn(G) = {φg : g ∈ G }. This is called the
inner automorphism group on G.

1. Prove that Aut(G) is a group under function composition.

2. Prove that φg is an automorphism. Conclude that Inn(G) is a subgroup of Aut(G).

0.0.1 Problems

Exercise 0.10 (Product of groups is commutative). Let G,H be groups. Prove that G×H is isomorphic to H ×G.
Exercise 0.11 (Product of groups is associative). Let G,H,K be groups. Prove that (G×H)×K is isomorphic to
G× (H ×K).
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