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We assume that the reader is already familiar with the basics of set theory and how to write proofs. More concretely,
the reader should have a good grasp on functions and relations. We do request that the reader know about equivalence
relations. Therefore, we will not treat them in this book. (If there is sufficient demand I will add these in)

In this book, the naturals start from zero. That is, N = { 0, 1, 2, . . . }. We denote the set of integers by Z, the set of
real numbers by R, the set of rational numbers by Q and the set of complex numbers by C.

We first begin with an axiom. This will help us with proving the division algorithm (Theorem 0.2) and the fact that
the GCD is a linear combination (Theorem 0.3).

Axiom 0.1 (Well-ordering for naturals). Let S ⊆ N be a nonempty set of natural numbers. Then, S has a smallest
element.

Theorem 0.2 (Division algorithm). Let n,m ∈ Z and m > 0. Then, there exists unique q, r ∈ Z, where 0 ≤ r < m
such that n = qm+ r.

Proof. Let
S = {n− qm : q ∈ Z, n− qm ≥ 0 } .

Then S is nonempty as n ∈ S, so it has a smallest element r. Clearly r < m, for if r ≥ m then it would not be the
smallest. Then n− r must divide m, so let q be an integer such that qm = n− r. For uniqueness, suppose q′, r′, where
0 ≤ r′ < m satisfies n = q′m+ r′. Then, qm+ r = q′m+ r′, so m(q − q′) = r′ − r. Observe that −m < r′ − r < m,
so q − q′ = 0, and thus r = r′ as well.

In the proof above, q is called the quotient and r is called the remainder. If the remainder r is zero, then m is said to
divide n, and we write m | n.

We now give some motivation for what is going on in the proof above. The set S may seem mysterious, but let
us quickly try to understand why it is defined as such. Let us suppose that we are dividing n by m. Recall from
elementary school that when performing long division, we are interested in the largest multiple of m, say qm such
that n− qm is as small as possible. So S should contain the minimum value of n− qm possible. This would be the
remainder.

Theorem 0.3 (GCD is a linear combination). Let n,m ∈ Z be nonzero integers. Then, there exists integers s, t ∈ Z
such that gcd(n,m) = ns+mt. Additionally, gcd(n,m) is the smallest positive integer of the form ns+mt.

Proof. Let
S = {na+mb : a, b ∈ Z, na+mb > 0 } .

Then S is nonempty, so it has a smallest element d, which is of the form ns + mt. We claim d = gcd(n,m).
First, we show d divides both n and m. By Theorem 0.2, n = qd + r, where 0 ≤ r < d. If r > 0 then we have
r = n− qd = n− q(ns+mt) = n(1− qs)−m(qt). So r ∈ S but r < d, a contradiction. A similar argument holds for
m, so d divides both n and m. Let d′ divide both n and m too, we show d′ divides d to establish that d is in fact the
gcd. Let n = d′h, and m = d′k. Then d = (d′h)s+ (d′k)t = d′(hs+ kt) as desired.

Once again we have constructed a rather mysterious looking set. However, such a set S is natural because we are
trying to show that the gcd is the smallest positive integer that is a linear combination of n,m.

We say that 2 numbers n,m are coprime if gcd(n,m) = 1. One corollary of this theorem is so important it is singled
out.

Corollary 0.4 (Bezout’s lemma). If gcd(n,m) = 1, then there exists integers s, t ∈ Z such that ns+mt = 1.

And now a quick application of this corollary
Lemma 0.5 (Euclid’s Lemma). Let p be a prime and p | ab. Then p | a or p | b.

Proof. Suppose p does not divide a. Then, by Corollary 0.4, there are integers s, t such that as + pt = 1, so
b = bas+ bpt. Then p divides the right side of the equation, so it divides the left side too.
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This theorem tells us that we can factorize natural numbers into a product of primes in a unique way.

Theorem 0.6 (Fundamental Theorem of Arithmetic). Let n ∈ N and n > 1. Then n is prime, or is a unique
product of primes.

Proof. Exercise for the reader. Use Lemma 0.5 and strong induction.

All the results here are rather important especially in the study of finite group theory. As we go deeper into the book,
we will invoke them with no explicit mention, so the reader is highly encouraged to keep these in mind.
Exercise 0.7 (Fundamental Theorem of Arithmetic). Prove Theorem 0.6
Exercise 0.8 (Generalized Euclid’s lemma). Prove that if p | a1 · · · an then p | ai for some ai.
Exercise 0.9. Prove that there are infinitely many primes.


